Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Specify a Parquet File Name When Saving in Databricks to Azure Data Lake

  • vlogize
  • 2025-05-21
  • 3
How to Specify a Parquet File Name When Saving in Databricks to Azure Data Lake
Specify parquet file name when saving in Databricks to Azure Data Lakeazure data factorydatabricksparquetazure data lake
  • ok logo

Скачать How to Specify a Parquet File Name When Saving in Databricks to Azure Data Lake бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Specify a Parquet File Name When Saving in Databricks to Azure Data Lake или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Specify a Parquet File Name When Saving in Databricks to Azure Data Lake бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Specify a Parquet File Name When Saving in Databricks to Azure Data Lake

Learn how to save your parquet files with specific names in Databricks when writing to Azure Data Lake, ensuring compatibility with Azure Data Factory copy activities.
---
This video is based on the question https://stackoverflow.com/q/70258747/ asked by the user 'lyubol' ( https://stackoverflow.com/u/16522122/ ) and on the answer https://stackoverflow.com/a/70263763/ provided by the user 'Karthikeyan Rasipalay Durairaj' ( https://stackoverflow.com/u/9599091/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Specify parquet file name when saving in Databricks to Azure Data Lake

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Specify a Parquet File Name When Saving in Databricks to Azure Data Lake

When working with Databricks and Azure Data Lake, you might encounter a situation where you want to save your parquet files with a specific name instead of the automatically generated names. This particular need often arises when you're planning to utilize these files in Azure Data Factory for copy activities. In this guide, we will address this issue and provide a solution to help you achieve your goal.

The Problem

You may have noticed that when you try to save DataFrames in Databricks as parquet files, the system creates a folder named after the dataset (e.g., Covid19_Cases) and generates parquet files within that folder with random names. This automatic behavior can complicate data handling in Azure Data Factory, as it requires specific file names for efficient processing.

For example, when executing the following command:

[[See Video to Reveal this Text or Code Snippet]]

What results is a folder with unconventionally named parquet files:

Covid19_Cases/part-00000-xxxx.snappy.parquet

Covid19_Cases/part-00001-xxxx.snappy.parquet

To utilize specific files in Data Factory, you need consistent naming rather than the system-generated names.

The Solution

Understanding Spark's Behavior

First, it's essential to understand that Spark processes data in a distributed mode. This means that when a DataFrame is saved, it gets divided and written in chunks across multiple files for efficiency. As a result, multiple files are created rather than a single one. However, you can use a workaround to ensure you have a single parquet file with a specific name.

Step-by-Step Guide to Naming Your Parquet File

Here’s an approach you can follow to save DataFrames in Databricks to Azure Data Lake with a designated file name:

Set the Save Locations:
Define your paths clearly to work with folders and file names.

[[See Video to Reveal this Text or Code Snippet]]

Write the DataFrame:
Use the repartition method to ensure that the DataFrame is consolidated into a single partition. This helps to create only one output file.

[[See Video to Reveal this Text or Code Snippet]]

Copy the File:
Next, list the contents of the temporary parquet location and copy the newly created file to your desired location.

[[See Video to Reveal this Text or Code Snippet]]

Clean Up:
Finally, remove the temporary parquet folder as it is no longer needed.

[[See Video to Reveal this Text or Code Snippet]]

Final Thoughts

By following the steps outlined above, you can effectively save your DataFrames as parquet files in Databricks with specific file names in Azure Data Lake. This ensures that your files are compatible with Azure Data Factory operations, allowing for smooth data copying and manipulation.

Implementing this process may seem a bit tedious at first, but once you've set it up, it will streamline your workflow significantly. Saving data with specific file names can greatly enhance your data management strategies in Azure Data Lake.

If you have any questions or need further clarification on the approach discussed, feel free to leave a comment below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]