Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Recurrent Neural Networks (RNNs) - Building Deep Learning Models with TensorFlow

  • Ta Hai Dang
  • 2020-11-11
  • 29
Recurrent Neural Networks (RNNs) - Building Deep Learning Models with TensorFlow
recurrent neural networksrecurrent neural networkdeep learningneural networksneural networkmachine learningrecurrent neural network tutorialrecurrent neural network explaineddeep learning with tensorflowrecurrent neural network tutorial tensorflowtensorflowrecurrent neural network lstmdeep learning tutorialdeep learning with tensorflow introduction
  • ok logo

Скачать Recurrent Neural Networks (RNNs) - Building Deep Learning Models with TensorFlow бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Recurrent Neural Networks (RNNs) - Building Deep Learning Models with TensorFlow или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Recurrent Neural Networks (RNNs) - Building Deep Learning Models with TensorFlow бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Recurrent Neural Networks (RNNs) - Building Deep Learning Models with TensorFlow

Link to this course:
https://click.linksynergy.com/deeplin...
Recurrent Neural Networks (RNNs) - Building Deep Learning Models with TensorFlow
IBM AI Engineering Specialization
The majority of data in the world is unlabeled and unstructured. Shallow neural networks cannot easily capture relevant structure in, for instance, images, sound, and textual data. Deep networks are capable of discovering hidden structures within this type of data. In this course you’ll use TensorFlow library to apply deep learning to different data types in order to solve real world problems.
Learning Outcomes:
After completing this course, learners will be able to:
• explain foundational TensorFlow concepts such as the main functions, operations and the execution pipelines.
• describe how TensorFlow can be used in curve fitting, regression, classification and minimization of error functions.
• understand different types of Deep Architectures, such as Convolutional Networks, Recurrent Networks and Autoencoders.
• apply TensorFlow for backpropagation to tune the weights and biases while the Neural Networks are being trained.

I would like to thank the lecturer for this fruitful course. I have enjoyed it, Thanks a lot!,Excellent course to get started with tensorflow and deep learning.Really enjoyed the course.
In this module, you will learn about the recurrent neural network model, and special type of a recurrent neural network, which is the Long Short-Term Memory model. Also, you will learn about the Recursive Neural Tensor Network theory, and finally, you will apply recurrent neural networks to language modelling.
Recurrent Neural Networks (RNNs) - Building Deep Learning Models with TensorFlow
Copyright Disclaimer under Section 107 of the copyright act 1976, allowance is made for fair use for purposes such as criticism, comment, news reporting, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favour of fair use.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]