Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Merging DataFrames in Python: Mastering Date Ranges and Identifiers

  • vlogize
  • 2025-05-27
  • 0
Merging DataFrames in Python: Mastering Date Ranges and Identifiers
Merging dataframes based on date range and identifierspythonpandasdataframenumpymerge
  • ok logo

Скачать Merging DataFrames in Python: Mastering Date Ranges and Identifiers бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Merging DataFrames in Python: Mastering Date Ranges and Identifiers или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Merging DataFrames in Python: Mastering Date Ranges and Identifiers бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Merging DataFrames in Python: Mastering Date Ranges and Identifiers

Learn how to effectively merge dataframes based on date ranges, matching prices, and item identifiers in Python using Pandas.
---
This video is based on the question https://stackoverflow.com/q/65412437/ asked by the user 'stupideye' ( https://stackoverflow.com/u/983296/ ) and on the answer https://stackoverflow.com/a/65412607/ provided by the user 'BENY' ( https://stackoverflow.com/u/7964527/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Merging dataframes based on date range and identifiers

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Merging DataFrames in Python: Mastering Date Ranges and Identifiers

When working with data in Python, especially in the context of data science and analysis, you often face the challenge of merging two or more dataframes. A common requirement is to not only match an identifier (like an ID) but also ensure that other conditions, such as date ranges and price matches, are satisfied. In this guide, we will explore how to merge two dataframes based on these criteria using the powerful pandas library.

The Problem

Suppose you have two dataframes: one containing sales data and another containing promotional data.

Sales Data

DateIDPrice1/1/202039.991/1/202045.991/2/20201069.991/10/202045.991/11/2020310.99Promotional Data

Start_DateEnd_DateIDPricePromo1/1/20201/8/202039.99Event11/1/20201/8/202045.99Event11/1/20201/8/20201049.99Event1Desired Output

We want to merge these dataframes such that for each sale, we identify whether it falls within the promotional dates, matches the price, and has a corresponding event or is labeled a "Non-Event" if it does not.

The expected output format is:

DateIDPricePromo1/1/202039.99Event11/1/202045.99Event11/2/20201069.99Non-Event1/10/202045.99Non-Event1/11/2020310.99Non-EventThe Solution

To achieve this merging process in Python, we can utilize the pandas library. Here's a step-by-step breakdown of the solution.

Step 1: Import Necessary Libraries

Make sure you have pandas installed:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Prepare the DataFrames

First, create your sales and promotional dataframes:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Merging the DataFrames

To perform the merge, we use the following code:

[[See Video to Reveal this Text or Code Snippet]]

This code merges the Sales and Promotional dataframes on the 'ID' and 'Price' columns. The how='left' parameter ensures that we keep all entries from the Sales dataframe, regardless of whether they have a match in the Promotional dataframe.

Step 4: Adjusting for Date Ranges

Next, we need to filter the promotions to identify if the sale date falls within the promotional period:

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Clean Up the DataFrame

Finally, we drop unnecessary columns to produce the desired output:

[[See Video to Reveal this Text or Code Snippet]]

Final Output

This produces a clean dataframe with the expected results:

DateIDPricePromo2020-01-0139.99Event12020-01-0145.99Event12020-01-021069.99Non-Event2020-01-1045.99Non-Event2020-01-11310.99Non-EventConclusion

Merging dataframes in Python using pandas based on intricate conditions like date ranges and price matching can seem daunting, but with the right approach, it becomes a straightforward task. By following the steps outlined above, you can successfully merge your dataframes while maintaining the integrity of your original data. This technique is essential for analysis involving sales, promotions, and more complex datasets.

Now, you're ready to tackle similar challenges in your data projects! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]