Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Change Selective Index Dates in Pandas Using BDay()

  • vlogize
  • 2025-09-21
  • 0
How to Change Selective Index Dates in Pandas Using BDay()
Changing selective index dates in pandaspythonpython 3.xpandasdatetime
  • ok logo

Скачать How to Change Selective Index Dates in Pandas Using BDay() бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Change Selective Index Dates in Pandas Using BDay() или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Change Selective Index Dates in Pandas Using BDay() бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Change Selective Index Dates in Pandas Using BDay()

Learn how to efficiently update specific dates in a pandas DataFrame with next business days without altering other row contents!
---
This video is based on the question https://stackoverflow.com/q/62734746/ asked by the user 'Slartibartfast' ( https://stackoverflow.com/u/12275675/ ) and on the answer https://stackoverflow.com/a/62734819/ provided by the user 'ap1997' ( https://stackoverflow.com/u/11072444/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Changing selective index dates in pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Changing Selective Index Dates in Pandas Using BDay()

Managing dates in your data frames can often be tricky, especially when you need to update specific dates while keeping the rest of the row content intact. If you're working with pandas in Python and need to adjust certain dates to the next business day, you've come to the right place. In this guide, we'll walk you through the process of changing selective index dates in pandas.

The Problem: Updating Selective Dates

Imagine you have a DataFrame containing various dates, along with associated days of the week. However, there are certain dates you need to modify. For instance, suppose you have a DataFrame named xl_file with the following structure:

[[See Video to Reveal this Text or Code Snippet]]

Next, you have another DataFrame, list_of_dates, which consists of the dates you intend to change. It may look like this:

[[See Video to Reveal this Text or Code Snippet]]

The Goal

The objective is clear: whenever a date from list_of_dates appears in xl_file, we want to update that date to the next business day (using BDay()) while leaving the rest of the data in the row unchanged.

The Solution: Using Pandas and BDay()

Here's how you can achieve this using the powerful capabilities of the pandas library. We'll walk through two different approaches depending on your needs.

Method 1: Using apply()

If your focus is on modifying the entries directly within the "Date" column of your DataFrame, you could use the apply() function:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

xl_file["Date"].apply(...): Applies a function to each element in the "Date" column.

lambda x: x + BDay() if x in list_of_dates.index else x: Checks if the current date (x) is in the list_of_dates. If it is, it adds one business day; otherwise, it leaves it unchanged.

Method 2: Adjusting the Index

Since your task may involve modifying the index directly, here’s an alternative method that uses map() to adjust the DataFrame's index:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

xl_file.index.map(...): Similar to apply(), but here it specifically updates the index of the DataFrame.

lambda x: x + BDay() if x in list_of_dates.index else x: Works just like the first method, but this time for the index rather than for a specific column.

Conclusion

By following these methods, you can effectively update specific dates in your pandas DataFrame to the next business day. This is instrumental for maintaining the integrity of your data, especially when handling financial or time-sensitive information. Remember, whether you choose to modify a column or the index depends on your data's structure and your objectives.

Happy coding and data managing! If you have any questions or need further assistance, feel free to ask.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]