Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Solve the pd.concat Error When Merging DataFrames in Python

  • vlogize
  • 2025-09-22
  • 0
How to Solve the pd.concat Error When Merging DataFrames in Python
Unable to merge two dataframes with pd.concatpythonpandas
  • ok logo

Скачать How to Solve the pd.concat Error When Merging DataFrames in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Solve the pd.concat Error When Merging DataFrames in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Solve the pd.concat Error When Merging DataFrames in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Solve the pd.concat Error When Merging DataFrames in Python

Learn how to easily and effectively merge two dataframes in Python using `pd.concat`, solving common issues related to index misalignment.
---
This video is based on the question https://stackoverflow.com/q/62947833/ asked by the user 'ubuntu_noob' ( https://stackoverflow.com/u/8660280/ ) and on the answer https://stackoverflow.com/a/62947927/ provided by the user 'Satrio Adi Prabowo' ( https://stackoverflow.com/u/8299563/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Unable to merge two dataframes with pd.concat

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Merging DataFrames Using pd.concat in Python: Overcoming Index Issues

Working with data in Python often involves merging different DataFrames, and while the pd.concat method from the Pandas library is a powerful tool for this purpose, many users encounter difficulties—especially related to mismatched indices. This guide addresses a common problem faced by data analysts and developers: merging two DataFrames using pd.concat and resolving related issues.

The Problem: Merging Two DataFrames

You might find yourself in a situation where you are attempting to merge two DataFrames, only to encounter unexpected results, such as non-aligned data or a DataFrame filled with NaN values.

Example Scenario

Suppose you have two DataFrames:

df containing customer satisfaction predictions.

df2 with details about flight distances and services.

When you attempt to concatenate these DataFrames along the columns using:

[[See Video to Reveal this Text or Code Snippet]]

You end up with results that contain NaN values filling most of the rows.

This often indicates a problem with how the indices of these DataFrames align.

Understanding the Issue: Index Misalignment

The core issue here is that the indices of df and df2 do not match. When concatenating DataFrames, Pandas aligns data based on their indices. If the indices are different, you'll see several NaN values where the DataFrames don't align—leading to the results shown in your error.

The Solution: Resetting DataFrame Indices

The quickest way to solve the concatenation issue is to reset the indices of both DataFrames before merging them. This can be accomplished using the reset_index() method. Here’s how:

Step-by-Step Implementation

Reset the Indices: For both DataFrames, call reset_index(drop=True) to reindex them to a default integer index.

[[See Video to Reveal this Text or Code Snippet]]

Concatenate the DataFrames: Now that both DataFrames have aligned indices, you can safely concatenate them.

[[See Video to Reveal this Text or Code Snippet]]

Expected Result

Doing this will yield a correctly merged DataFrame, like so:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

When merging DataFrames using pd.concat, always ensure the indices of the DataFrames align correctly. If you encounter issues with NaN values, resetting the index should be your first troubleshooting step. By following the steps outlined here, you can successfully merge DataFrames and harness the full capabilities of the Pandas library without the headaches of index misalignment.

Whether you're a novice or seasoned user, mastering this concept will greatly enhance your data manipulation skills in Python. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]