Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Splitting Strings in Pyspark with Substrings from Another Table

  • vlogize
  • 2025-05-27
  • 0
Splitting Strings in Pyspark with Substrings from Another Table
  • ok logo

Скачать Splitting Strings in Pyspark with Substrings from Another Table бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Splitting Strings in Pyspark with Substrings from Another Table или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Splitting Strings in Pyspark with Substrings from Another Table бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Splitting Strings in Pyspark with Substrings from Another Table

Learn how to efficiently split string data in a Pyspark DataFrame using substring values from a lookup table. Follow our step-by-step guide with examples!
---
This video is based on the question https://stackoverflow.com/q/66645859/ asked by the user 'Alexander Witte' ( https://stackoverflow.com/u/6406626/ ) and on the answer https://stackoverflow.com/a/66647263/ provided by the user 'notNull' ( https://stackoverflow.com/u/7632695/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pyspark substring with values from another table

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Splitting Strings in Pyspark with Substrings from Another Table: A Complete Guide

Working with large datasets often requires advanced data manipulation techniques. If you're dealing with DataFrames in Pyspark, you might find yourself needing to split a string in one DataFrame based on substring definitions stored in another DataFrame. This can initially seem like a daunting task, but with the right approach, it's manageable. In this post, we will explore how to achieve this with a clear example, breaking down the process into simple steps.

The Problem: Splitting Strings

Imagine you have two DataFrames:

DataFrame A: Contains long strings of values.

DataFrame B: Functions as a lookup table, indicating where to split the strings in DataFrame A.

For our example, DataFrame A looks like this:

Data000 456 9b876 998 1cDataFrame B, on the other hand, specifies how to extract substrings from DataFrame A:

DescriptionStartEndLengthCity133Country573IheartSpark9102From these DataFrames, our goal is to create a resulting DataFrame that will look like this:

DataCityCountryIheartSpark000 456 9b0004569b876 998 1c8769981cThe Solution: Using crossJoin and pivot Functions

To achieve this output, we can use the crossJoin and pivot functions in Pyspark. Below, we break down the solution into manageable steps.

Step 1: Import Necessary Libraries

You will need to import relevant functions from the pyspark.sql module.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create DataFrames

Assuming you already have Spark running, create the two DataFrames based on the example data.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Perform a Cross Join

Next, we will create a cross join between the two DataFrames. This is crucial as it allows us to refer to each substring description alongside the string that will be manipulated.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Extract Substrings

Utilize the substring function to extract the required parts of the strings based on the start, length, and other attributes defined in DataFrame B. We can perform this extraction using expressions.

[[See Video to Reveal this Text or Code Snippet]]

Step 5: Pivot to Reshape Data

Finally, perform a pivot to reshape the DataFrame so that we have our required columns and corresponding substring values.

[[See Video to Reveal this Text or Code Snippet]]

Expected Output

When you run the above code, the output should match our desired DataFrame structure:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using Pyspark to manipulate and split strings based on defined substrings from a lookup table offers a powerful way to manage and analyze data. By following the outlined steps, you can efficiently transform your DataFrames to suit your analytical needs. Whether you're working with a cluster environment or handling smaller datasets, these techniques make it easier to derive meaningful insights from your data.

If you have any questions or thoughts on this process, feel free to leave a comment below! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]