Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Computing Batch Array Matrix Multiplication with NumPy

  • vlogize
  • 2025-05-28
  • 4
Efficiently Computing Batch Array Matrix Multiplication with NumPy
Efficient way to compute an array matrix multiplication for a batch of arrayspythonarraysnumpynumpy einsum
  • ok logo

Скачать Efficiently Computing Batch Array Matrix Multiplication with NumPy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Computing Batch Array Matrix Multiplication with NumPy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Computing Batch Array Matrix Multiplication with NumPy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Computing Batch Array Matrix Multiplication with NumPy

Discover how to optimize batch array matrix multiplication using NumPy, improving performance while avoiding the pitfalls of for loops.
---
This video is based on the question https://stackoverflow.com/q/66946841/ asked by the user 'Antonio Ferrara' ( https://stackoverflow.com/u/12444716/ ) and on the answer https://stackoverflow.com/a/66947210/ provided by the user 'hpaulj' ( https://stackoverflow.com/u/901925/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Efficient way to compute an array matrix multiplication for a batch of arrays

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficiently Computing Batch Array Matrix Multiplication with NumPy

When working with matrices and arrays in Python, particularly using NumPy, one often encounters the task of multiplying arrays and matrices together, especially in a batch setting. This guide will delve into a common problem: efficiently calculating the product of an array with a matrix for a batch of arrays, and how to optimize this process.

The Problem

Given:

An array w with shape (dim1,)

A matrix A with shape (dim1, dim2)

The goal is to multiply each row of the matrix A by the corresponding element of the array w. This is straightforward for a single array and matrix. However, extending this logic to a batch of arrays leads to the creation of a matrix W with shape (n_samples, dim1), and we want to sum the results across all samples.

Initially, you might consider using np.einsum to accomplish this, as shown below:

[[See Video to Reveal this Text or Code Snippet]]

Here, the array x is generated with shape (n_samples, dim1, dim2), and the result r sums to shape (dim1, dim2). However, you might find np.einsum to be slow, notably when dealing with large matrices.

Optimizing the Solution

Using einsum to Simplify Calculations

One effective optimization is recognizing that you can utilize einsum more efficiently. Instead of summing over j after creating x, you can perform the sum directly within einsum:

[[See Video to Reveal this Text or Code Snippet]]

By doing this, you reduce the dimensionality of the intermediate array x, which optimizes performance.

Summing Before Multiplication

Another approach is to sum W before multiplying with A:

[[See Video to Reveal this Text or Code Snippet]]

In this case, instead of creating a large intermediate result, you're using broadcasting to efficiently multiply the sum of W with A.

Summing After Multiplication

Suppose you want to maintain multiplication structure but avoid complex sums. You could utilize broadcasting like the following:

[[See Video to Reveal this Text or Code Snippet]]

This method requires simple broadcasting and summation after the multiplication, yielding the same final result without the overhead of large, intermediate arrays.

Conclusion

In this guide, we explored efficient ways to tackle the problem of multiplying matrices and arrays using NumPy. By leveraging the np.einsum function more effectively or considering different multiplication strategies, we can enhance performance significantly, especially when working with larger data sets.

Here is a recap of the optimized strategies:

Use einsum directly for summation during the matrix multiplication.

Sum W before multiplication to minimize computational overhead.

Utilize broadcasting for efficient multiplication and summation.

With these methods, you can achieve efficient computations in your NumPy-powered projects, improving both speed and memory efficiency. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]