Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Class 12 Maths | Chapter 3 | Matrices | Exercise 3.2 | Oneshot | Introuction + Q1 - Q22

  • Rapid Learn
  • 2024-06-30
  • 47
Class 12 Maths | Chapter 3 | Matrices | Exercise 3.2 | Oneshot | Introuction + Q1 - Q22
class 12 math ex 3.2 one shotclass 12 ex 3.2 one shot by nexa classesex 3.2 class12 math one shotclass 12 ex 3.2 math in one videoex 3.2 class 12 ncert math one shotex 3.2 class 12 math chapter3 in one shotclass 12 ex 3.2 single videoex 3.2 class 12 in one videoclass 12 one shot ex 3.2 mathex3.2 oneshotmatrices ex3.2 oneshotex3.2 oneshot class 12ex3.2oneshot for ex3.2class 12 ex3.2 one shotclass 12 ex3.2 oneshot matricesmatrices oneshot
  • ok logo

Скачать Class 12 Maths | Chapter 3 | Matrices | Exercise 3.2 | Oneshot | Introuction + Q1 - Q22 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Class 12 Maths | Chapter 3 | Matrices | Exercise 3.2 | Oneshot | Introuction + Q1 - Q22 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Class 12 Maths | Chapter 3 | Matrices | Exercise 3.2 | Oneshot | Introuction + Q1 - Q22 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Class 12 Maths | Chapter 3 | Matrices | Exercise 3.2 | Oneshot | Introuction + Q1 - Q22

In this oneshot video, you will get an introduction and solution for Q1 - Q22 of exercise 3.2 of Chapter 3 Matrices.

Welcome to Exercise 3.2 of Chapter 3: Matrices from the Class 12 Mathematics curriculum. This exercise focuses on the foundational concepts of matrices, ensuring that you have a solid understanding of their basic properties and operations.

Whether you're a student striving for top grades or an educator seeking effective teaching resources, this video is your ultimate companion in unraveling the mysteries of matrices. Join us on this educational journey as we empower you with the knowledge and skills to excel in Class 12 Mathematics.

Notes for Exercise 3.2 Introduction:

Notes for Exercise 3.2 (Q1 - Q22):


Time Stamps
0:00 Intro
0:04 Introduction for ex3.2
9:14 Question 1
11:27 Question 2
13:17 Question 3
16:27 Question 4
18:00 Question 5
18:42 Question 6
19:26 Question 7
22:10 Question 8
22:58 Question 9
24:00 Question 10
25:37 Question 11
26:53 Question 12
28:45 Question 13
30:37 Question 14
31:45 Question 15
32:46 Question 16
34:05 Question 17
35:51 Question 18
40:45 Question 19
45:38 Question 20
47:59 Question 21 & 22
50:21 Outro

#Class12Maths
#matrices
#ex3.1
#ex3.2
#ex3.3
#MathematicsTutorial

Short Notes On Matrices

Definition: A matrix is a rectangular array of numbers arranged in rows and columns.
Notation: Matrices are typically denoted by capital letters (e.g., A, B, C), and elements within a matrix are denoted by lowercase letters with subscripts (e.g., a_ij represents the element in the ith row and jth column of matrix A).
Types of Matrices

Row Matrix: A matrix with a single row (e.g., A = [a1 a2 a3]).
Column Matrix: A matrix with a single column (e.g., B = [b1; b2; b3]).
Square Matrix: A matrix with an equal number of rows and columns (e.g., 2x2, 3x3 matrices).
Rectangular Matrix: A matrix with an unequal number of rows and columns.
Zero Matrix: A matrix in which all elements are zero (e.g., O = [0 0; 0 0]).
Identity Matrix: A square matrix with ones on the diagonal and zeros elsewhere (e.g., I = [1 0; 0 1]).
Order of a Matrix

The order of a matrix is defined by the number of rows (m) and columns (n), represented as m × n. For example, a 3 × 2 matrix has 3 rows and 2 columns.
Equality of Matrices

Two matrices are said to be equal if they have the same order and their corresponding elements are equal. For matrices A and B, A = B if and only if a_ij = b_ij for all i and j.
Addition and Subtraction of Matrices

Addition: Matrices of the same order can be added by adding their corresponding elements. If A = [a_ij] and B = [b_ij], then A + B = [a_ij + b_ij].
Subtraction: Similarly, matrices of the same order can be subtracted by subtracting their corresponding elements. If A = [a_ij] and B = [b_ij], then A - B = [a_ij - b_ij].
Important Keywords and Concepts
Matrix: An arrangement of numbers in rows and columns.
Element: An individual item or number in a matrix.
Row: A horizontal line of elements in a matrix.
Column: A vertical line of elements in a matrix.
Order of a Matrix: The dimensions of a matrix, given by the number of rows and columns (m × n).
Row Matrix: A matrix with a single row.
Column Matrix: A matrix with a single column.
Square Matrix: A matrix with an equal number of rows and columns.
Rectangular Matrix: A matrix with different numbers of rows and columns.
Zero Matrix: A matrix with all elements being zero.
Identity Matrix: A square matrix with 1's on the diagonal and 0's elsewhere.
Equal Matrices: Matrices that have the same order and identical corresponding elements.
Matrix Addition: The process of adding two matrices by adding their corresponding elements.
Matrix Subtraction: The process of subtracting one matrix from another by subtracting their corresponding elements.

Practice Problems
This chapter (Matrices) includes a variety of problems designed to test your understanding of the above concepts. You will be asked to:

Identify the order of given matrices.
Determine if two matrices are equal.
Perform addition and subtraction of matrices.
Classify matrices based on their types.
By working through these problems, you will strengthen your foundational knowledge of matrices and prepare yourself for more advanced topics in the subsequent exercises.

This detailed overview of Matrices provides you with a clear understanding of what to expect and the important keywords you need to know. Dive into the exercise, practice diligently, and master the basics of matrices to build a strong mathematical foundation.

This description provides a comprehensive overview of Matrices, covering key topics, important keywords, and a summary of practice problems. It ensures that students are well-prepared to tackle the exercise and understand the fundamental concepts of matrices.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]