Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Generative Language Models in Molecular Discovery: Regression Transformer, GT4SD and Beyond

  • Valence Labs
  • 2023-08-20
  • 1970
Generative Language Models in Molecular Discovery: Regression Transformer, GT4SD and Beyond
machine learning for drug discoveryfragment-based hit discoverymolecular featurizationchemistrycomputational chemistrytutorialsmachine learningbiology
  • ok logo

Скачать Generative Language Models in Molecular Discovery: Regression Transformer, GT4SD and Beyond бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Generative Language Models in Molecular Discovery: Regression Transformer, GT4SD and Beyond или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Generative Language Models in Molecular Discovery: Regression Transformer, GT4SD and Beyond бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Generative Language Models in Molecular Discovery: Regression Transformer, GT4SD and Beyond

Valence Labs is a research engine within Recursion committed to advancing the frontier of AI in drug discovery. Learn more about our open roles: https://www.valencelabs.com/careers

Also consider joining the M2D2 Slack: https://m2d2group.slack.com/join/shar...

Abstract:This talk will discuss recent developments of scientific language models for molecular design. Despite tremendous progress of generative models in the natural sciences, controllability remains challenging and a fundamentally missing aspect is an inductive bias that reflects continuous properties of interest. To that end, we propose the Regression Transformer (RT), a method that abstracts regression as a conditional sequence modelling problem. The RT introduces a new direction for multitask language models by seamlessly bridging regression and conditional sequence generation. Interestingly, in molecular, protein or reaction property prediction tasks, the RT matches conventional regression models despite using cross-entropy loss. But the RT is dichotomous: priming it with continuous properties yields a competitive conditional generative model that outperforms specialized approaches in a substructure-constrained, property-driven molecule generation benchmark. As we showcase, the RT enabled the discovery of novel catalysts and block co-polymers for ring-opening polymerisation through property-driven, local chemical space exploration.
Intensifying our efforts in multitask chemical language models, we present a “Text & Chemistry T5” that solves tasks interfacing textual and molecular representations (e.g., molecule captioning, text-based molecule design) but also unimodal tasks such as forward/backward reaction prediction in a truly multitask, prompt-based manner. All presented methodology is open-sourced in GT4SD, the Generative Toolkit for Scientific Discovery that distributes 30+ state-of-the-art molecular generative models in a harmonised manner.

Speaker: Jannis Born - https://research.ibm.com/people/janni...

Twitter Prudencio:   / tossouprudencio  
Twitter Jonny:   / hsu_jonny  

~

Chapters:

00:00 - Identifiability Background
05:03 - Structural Causal Models
07:19 - Interventions
11:08 - Identifiability in Causality
20:55 - Learning From Unknown-Target Interventions
30:53 - Learning in the Presence of Unobserved Variables
35:33 - Treks
38:58 - Latent Factor Causal Models (LFCMs)
44:39 - Causal Disentanglement Models
50:13 - Linear Causal Disentanglement via Intervention
01:01:00 - Ongoing Work
1:05:59 - Q+A

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]