Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Make Accurate Forecasts in Machine Learning: A Beginner's Guide to Using Linear Regression

  • vlogize
  • 2025-10-02
  • 0
How to Make Accurate Forecasts in Machine Learning: A Beginner's Guide to Using Linear Regression
Machinelearning how to make a forecast from learning and training datapython
  • ok logo

Скачать How to Make Accurate Forecasts in Machine Learning: A Beginner's Guide to Using Linear Regression бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Make Accurate Forecasts in Machine Learning: A Beginner's Guide to Using Linear Regression или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Make Accurate Forecasts in Machine Learning: A Beginner's Guide to Using Linear Regression бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Make Accurate Forecasts in Machine Learning: A Beginner's Guide to Using Linear Regression

Learn how to use linear regression in Python to make accurate forecasts based on training data. This guide walks you through the steps to predict insurance costs effectively.
---
This video is based on the question https://stackoverflow.com/q/63918344/ asked by the user 'user123' ( https://stackoverflow.com/u/14280163/ ) and on the answer https://stackoverflow.com/a/63918412/ provided by the user 'Minh Nguyen' ( https://stackoverflow.com/u/14169633/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Machinelearning, how to make a forecast from learning and training data

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Machine Learning Forecasting with Linear Regression

Machine learning is revolutionizing the way we make predictions and analyze data. One popular approach to forecasting is using linear regression, especially in Python with libraries like Pandas. This guide will guide you through the process of making predictions from training data, specifically focusing on estimating insurance costs based on personal lifestyle data.

The Problem: Making Predictions from Training Data

Imagine you have a well-curated dataset from Kaggle that includes various lifestyle factors and their corresponding insurance costs. After spending significant time on training and testing your model, you find yourself at a crossroads: how do you use this model to predict future insurance costs for new individuals?

Your current performance metrics are promising, with an accuracy of 73.5% on your training set and 79.5% on your test set. This indicates that your model is quite good, but it’s time to put it to practical use. Let's go over the steps you need to follow to make accurate predictions.

Steps to Make Predictions Using Linear Regression

1. Fit Your Model

If you've already trained your model using the training datasets (X_train for inputs and y_train for outputs), you can move on to making predictions. The process begins with fitting your linear regression model:

[[See Video to Reveal this Text or Code Snippet]]

2. Making Predictions

Once you have trained your model, you can use it to predict outcomes for new data. To do this, you’ll use the predict method:

[[See Video to Reveal this Text or Code Snippet]]

Here, X_test contains the new input data points (e.g., the lifestyle factors of a new person for whom you're estimating the insurance cost).

3. Evaluating Predictions

After making predictions, it’s essential to evaluate their accuracy. Use the score method to compare your predicted values against actual labels:

[[See Video to Reveal this Text or Code Snippet]]

This step will give you an idea of how well your model is predicting insurance costs for data it hasn’t seen before.

Conclusion: Making Accurate Forecasts

In summary, making forecasts with your trained linear regression model involves three main steps: fitting your model, predicting outputs for new data, and evaluating the accuracy of these predictions. By following these steps, you can confidently estimate insurance costs based on new individuals' lifestyle data.

With practice and experimentation, you can further refine your model and explore additional algorithms to improve accuracy. Happy forecasting!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]