Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Lecture 4-1: Data Types, Data Organization, and Data Modality - Data Modeling and Regression

  • Le Truc Lien
  • 2020-11-07
  • 13
Lecture 4-1: Data Types, Data Organization, and Data Modality - Data Modeling and Regression
data analysis in exceltime series analysis in rlinear regressionanalysislogistic regressionlecture (type of public presentation)time series trend analysisbusinessexcel data analysisuw school of medicine and public healthgoogle chrome tips and tricks for androiddata analysisdata analysis (media genre)time series analysismultiple regression8 minute stats lectures
  • ok logo

Скачать Lecture 4-1: Data Types, Data Organization, and Data Modality - Data Modeling and Regression бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Lecture 4-1: Data Types, Data Organization, and Data Modality - Data Modeling and Regression или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Lecture 4-1: Data Types, Data Organization, and Data Modality - Data Modeling and Regression бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Lecture 4-1: Data Types, Data Organization, and Data Modality - Data Modeling and Regression

Link to this course:
https://click.linksynergy.com/deeplin...
Lecture 4-1: Data Types, Data Organization, and Data Modality - Data Modeling and Regression Analysis in Business

The course will begin with what is familiar to many business managers and those who have taken the first two courses in this specialization. The first set of tools will explore data description, statistical inference, and regression. We will extend these concepts to other statistical methods used for prediction when the response variable is categorical such as win-don’t win an auction. In the next segment, students will learn about tools used for identifying important features in the dataset that can either reduce the complexity or help identify important features of the data or further help explain behavior.


There has been a tremendous increase in the way data generation via sensors, digital platforms, user-generated content, etc. are being used in the industry. For example, sensors continuously record data and store it for analysis at a later point. In the way data gets captured, there can be a lot of redundancy. With more variables, comes more trouble! There may be very little (or no) incremental information gained from these sources. This is the problem of a high number of unwanted dimensions. To avoid this pitfall, data transformation and dimension reduction comes to the rescue by examining and extracting fewer dimensions while ensuring that it conveys the full information concisely.
Lecture 4-1: Data Types, Data Organization, and Data Modality - Data Modeling and Regression Analysis in Business
Copyright Disclaimer under Section 107 of the copyright act 1976, allowance is made for fair use for purposes such as criticism, comment, news reporting, scholarship, and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favour of fair use.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]