Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Improving Performance of Groupwise Interpolation in Python Using Pandas and SciPy

  • vlogize
  • 2025-05-25
  • 0
Improving Performance of Groupwise Interpolation in Python Using Pandas and SciPy
Interpolate groupwise - how to improve performancepythonpandasscipyinterpolation
  • ok logo

Скачать Improving Performance of Groupwise Interpolation in Python Using Pandas and SciPy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Improving Performance of Groupwise Interpolation in Python Using Pandas and SciPy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Improving Performance of Groupwise Interpolation in Python Using Pandas and SciPy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Improving Performance of Groupwise Interpolation in Python Using Pandas and SciPy

Discover how to enhance performance in groupwise interpolation in Python with pandas and SciPy, using `groupby` and `apply` for efficient data processing.
---
This video is based on the question https://stackoverflow.com/q/71267536/ asked by the user 'Florian Seliger' ( https://stackoverflow.com/u/7251158/ ) and on the answer https://stackoverflow.com/a/71267773/ provided by the user 'quasi-human' ( https://stackoverflow.com/u/18059879/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Interpolate groupwise - how to improve performance

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Improving Performance of Groupwise Interpolation in Python Using Pandas and SciPy

When working with large datasets in Python, especially those containing time series data across multiple groups, performance can become a critical issue. A common challenge faced by data scientists is efficiently applying interpolation to subsets of data defined by grouping factors. In this guide, we will explore how to perform groupwise interpolation using scipy.interpolate while significantly improving performance by leveraging pandas functionalities.

The Problem: Poor Performance in Groupwise Interpolation

Consider a dataset that contains yearly data grouped by identifiers, such as bfsId, with several variables such as income and taxes_perc. The goal is to interpolate taxes_perc values based on income for each combination of year and bfsId. While a looping approach can achieve this, it often results in slow performance, especially when dealing with extensive datasets—like over 20 years and more than 2000 identifiers.

Here is an example of how the data is structured:

[[See Video to Reveal this Text or Code Snippet]]

The naive approach implemented utilizes for loops to interpolate values and appends them to a new dataframe, causing significant slowdowns when scaling up.

The Solution: Leveraging Groupby and Apply

Instead of looping through each subgroup, we can utilize pandas' groupby and apply methods, which are designed for bulk operations and can significantly reduce computation time.

Step-by-Step Implementation

Import Required Libraries: Make sure to import pandas and scipy.interpolate libraries.

Define a Function for Interpolation: This function will apply the interpolation logic to each group.

Use Groupby and Apply Efficiently: Execute the interpolation function across all relevant groups in one go.

Here’s the improved code for our interpolation task:

[[See Video to Reveal this Text or Code Snippet]]

Key Points to Note

Sorting: Sorting the dataframe by group keys can help ensure that the interpolation works correctly within each subset of data.

Function Definition: The interpolation function interpolate_tax_rates applies the interp1d method only once per unique group, leading to better performance.

Efficient Application: By applying the newly defined function with groupby, we reduce the number of iterations and make better use of vectorization—a core feature of pandas.

Expected Output

The output from the code will be a dataframe with an additional column tax_rate_interpol containing the interpolated tax rates based on the defined income levels.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Through this method, we have not only solved the initial performance problem but also maintained the clarity and simplicity of the code. By utilizing groupby and apply, you can effectively run operations on larger datasets without falling victim to the inefficiencies of loops. Next time you're faced with similar challenges, remember the power of pandas' group functionalities for efficient data processing.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]