Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Implementing a Cycle Detection Algorithm in Python Using BFS

  • vlogize
  • 2025-09-28
  • 0
Implementing a Cycle Detection Algorithm in Python Using BFS
Cycle Detection in Graph Implementation in Pythonpythonbreadth first search
  • ok logo

Скачать Implementing a Cycle Detection Algorithm in Python Using BFS бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Implementing a Cycle Detection Algorithm in Python Using BFS или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Implementing a Cycle Detection Algorithm in Python Using BFS бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Implementing a Cycle Detection Algorithm in Python Using BFS

Learn how to effectively implement a cycle detection algorithm in graphs using Python's BFS. This step-by-step guide helps troubleshoot common issues with code.
---
This video is based on the question https://stackoverflow.com/q/63648842/ asked by the user 'A. Radek Martinez' ( https://stackoverflow.com/u/4492741/ ) and on the answer https://stackoverflow.com/a/63649184/ provided by the user 'Jan Stránský' ( https://stackoverflow.com/u/2700104/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Cycle Detection in Graph Implementation in Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Implementing a Cycle Detection Algorithm in Python Using BFS

Cycle detection in graphs is a fundamental problem in computer science. It becomes crucial when you're working with data structures that rely on the relationships between objects. Whether you're developing algorithms for scheduling tasks, detecting errors in data pipelines, or simply understanding graph theory, being able to identify cycles is essential. In this post, we will look at how to implement a cycle detection algorithm using Python's breadth-first search (BFS) methodology.

The Problem

You are tasked with developing an algorithm that identifies cycles in a graph. A cycle in a graph occurs when a node can be revisited through its neighbors, leading you back to the starting point. The challenge lies in correctly managing the states of the nodes to detect these cycles.

Sample Graph

To illustrate the concept, we will work with the following undirected graph represented in Python:

[[See Video to Reveal this Text or Code Snippet]]

In this graph, nodes A, B, C, D, and E are interconnected. Our goal is to create a function that can visit these nodes and flag whether a cycle exists.

Understanding the Algorithm

Node Status Representation

To track the status of each node during traversal:

-1: Not yet visited

0: Currently being visited (in the queue)

1: Fully processed (visited)

The BFS Approach

We'll use a queue to handle the nodes we need to visit. By scanning each node's neighbors, we can determine if we've encountered a cycle. Here’s a breakdown of the code provided in the question:

[[See Video to Reveal this Text or Code Snippet]]

Traversal Function

The provided traversal function is called recursively to implement BFS:

[[See Video to Reveal this Text or Code Snippet]]

The Issue

If you run the provided code, you may notice that it doesn't successfully detect cycles. The problem arises from the handling of the cycle variable—it’s declared within the traversal function scope but does not affect the global cycle variable that is printed.

Solutions to the Problem

You can address this issue in one of two ways:

Return the Cycle Status:

Modify the function to return the cycle status:

[[See Video to Reveal this Text or Code Snippet]]

Use a Global Variable:

You could also define the variable as global within the function:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By employing BFS and strategically managing the statuses of each node in your graph, you can efficiently detect cycles. Debugging the code for the cycle variable is a common pitfall but can be easily rectified by either returning the variable from the function or declaring it as global. Implementing a cycle detection algorithm is not only a fulfilling task but also enhances your programming skills in graph theory concepts.

Now that you have the fundamentals, go ahead and test different graphs to see your cycle detection algorithm at work!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]