Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Find Duplicate Rows by Multiple Columns and Within a Timeframe Using Python

  • vlogize
  • 2025-09-17
  • 0
How to Find Duplicate Rows by Multiple Columns and Within a Timeframe Using Python
How to find duplicate rows by multiple columns and within a timeframepythonpandasdatetimeduplicatesrows
  • ok logo

Скачать How to Find Duplicate Rows by Multiple Columns and Within a Timeframe Using Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Find Duplicate Rows by Multiple Columns and Within a Timeframe Using Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Find Duplicate Rows by Multiple Columns and Within a Timeframe Using Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Find Duplicate Rows by Multiple Columns and Within a Timeframe Using Python

Discover a step-by-step guide to identify duplicate rows based on multiple columns and a specific timeframe using Python and Pandas.
---
This video is based on the question https://stackoverflow.com/q/63360938/ asked by the user 'j_00' ( https://stackoverflow.com/u/14087692/ ) and on the answer https://stackoverflow.com/a/63361713/ provided by the user 'Kuldip Chaudhari' ( https://stackoverflow.com/u/12496509/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to find duplicate rows by multiple columns and within a timeframe

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Find Duplicate Rows by Multiple Columns and Within a Timeframe Using Python

Identifying duplicates in datasets is a common task in data preprocessing. It allows us to ensure data integrity and cleanliness, especially when developing machine learning models or performing data analysis. In this guide, we'll explore how to effectively find and extract duplicate rows from a DataFrame based on multiple columns and a designated timeframe using Python and Pandas.

The Problem at Hand

Imagine you have a DataFrame containing records of different fruits, animals, timestamps, and a number. Your goal is to identify rows where the 'fruit' and 'animal' columns have the same values and the difference in their dateTime values does not exceed 10 minutes. This specific requirement can prove to be a bit challenging, so let's break it down step-by-step!

Given a sample DataFrame df_test:

dateTimefruitanimalnumber08/01/2020 1:08:00 AMapplemonkey108/01/2020 1:05:00 AMapplemonkey408/01/2020 1:20:00 AMapplefrog308/01/2020 1:40:00 AMpeardog108/01/2020 1:47:00 AMapplemonkey2We want to gather rows where both fruit and animal match, and their associated datetime entries fall within 10 minutes of each other.

The Solution Approach

Step 1: Identify Initial Duplicates

To start the process, we extract the potential duplicates based on 'fruit' and 'animal'.

[[See Video to Reveal this Text or Code Snippet]]

This creates a DataFrame duplicates_df which contains only rows that have duplicate entries for fruit and animal.

Step 2: Group and Compare DateTime

Next, we need to evaluate the dateTime differences of the identified duplicates. For this, we'll group data based on the matched columns and thoroughly check the conditions.

Here’s the complete solution:

[[See Video to Reveal this Text or Code Snippet]]

Code Explanation

Import Libraries: We import the necessary libraries including datetime for handling time and itertools for generating combinations.

Define processGroup Function:

This function processes groups of duplicates.

It compares the datetime indexes and checks if the difference is within 10 minutes.

Groups of related entries are formed based on the provided conditions.

Group the DataFrame:

We group duplicates by fruit and animal.

Merging results from processGroup, a clean summary of input is produced along with designated group identifiers.

Conclusion

By following these steps, you can successfully filter out rows from your DataFrame that meet specific criteria of duplicates based on multiple columns and a datetime difference. Such preprocessing techniques are essential for a clean and valuable dataset, which ultimately leads to more efficient data analysis or model training!

Incorporate this method into your data workflows, and you'll not only streamline your processes but also enhance the quality of your data: a crucial aspect of any data-centric project.

Keep exploring Python and Pandas to unlock even more powerful data manipulation capabilities!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]