Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

  • AI Papers Podcast Daily
  • 2025-07-09
  • 67
The Surprising Effectiveness of Test-Time Training for Few-Shot Learning
AI researchmachine learningdeep learningarxiv papershugging faceartificial intelligenceAI papersNLPneural networksAI podcastresearch papersAI trendstransformer modelsGPTAI newstech podcastcomputer visionAI breakthroughsML modelsdata scienceAI toolsgenerative AIAI updatesresearch insightsAI developmentsacademic AIML research
  • ok logo

Скачать The Surprising Effectiveness of Test-Time Training for Few-Shot Learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно The Surprising Effectiveness of Test-Time Training for Few-Shot Learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку The Surprising Effectiveness of Test-Time Training for Few-Shot Learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

This paper introduces and investigates *Test-Time Training (TTT)**, a technique designed to significantly enhance the ability of large language models (LMs) to learn new skills, especially when faced with tasks that are structurally different from their original training data. Unlike traditional in-context learning (ICL), which relies solely on examples provided within the prompt without altering the model's core parameters, TTT involves **temporarily updating the LM's parameters during inference* by using a loss function based on the few in-context examples available for the current task. The research demonstrates that TTT leads to substantial performance gains on challenging benchmarks such as the Abstraction and Reasoning Corpus (ARC) and BIG-Bench Hard (BBH). For instance, TTT improved accuracy on ARC by up to six times compared to fine-tuned baseline models, even reaching performance comparable to average human levels when combined with other techniques. On BBH, TTT surpassed standard few-shot prompting by 7.3 percentage points. The findings underscore TTT's effectiveness in helping LMs adapt to tasks requiring abstract reasoning, structured rules, or handling distribution shifts, suggesting its promise for developing more adaptable future LMs. The paper also details important design aspects of TTT, including strategies for generating training data at inference time, defining the optimization objective, and efficiently updating model parameters, highlighting the crucial role of in-context formatting and data augmentation for achieving strong results.

https://arxiv.org/pdf/2411.07279

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]