Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solving the PipeMapRed.waitOutputThreads() Error in Hadoop Streaming Jobs

  • vlogize
  • 2025-05-26
  • 0
Solving the PipeMapRed.waitOutputThreads() Error in Hadoop Streaming Jobs
Running a hadoop streaming and mapreduce job: PipeMapRed.waitOutputThreads() : subprocess failed witpythonjavahadoopmapreduce
  • ok logo

Скачать Solving the PipeMapRed.waitOutputThreads() Error in Hadoop Streaming Jobs бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solving the PipeMapRed.waitOutputThreads() Error in Hadoop Streaming Jobs или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solving the PipeMapRed.waitOutputThreads() Error in Hadoop Streaming Jobs бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solving the PipeMapRed.waitOutputThreads() Error in Hadoop Streaming Jobs

Learn how to effectively tackle the `PipeMapRed.waitOutputThreads()` error in Hadoop while using Python for the PageRank algorithm, ensuring smooth execution of your MapReduce jobs.
---
This video is based on the question https://stackoverflow.com/q/76691359/ asked by the user 'Tahar Jaafer' ( https://stackoverflow.com/u/15363500/ ) and on the answer https://stackoverflow.com/a/76694004/ provided by the user 'Tahar Jaafer' ( https://stackoverflow.com/u/15363500/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Running a hadoop streaming and mapreduce job: PipeMapRed.waitOutputThreads() : subprocess failed with code 1

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Solving the PipeMapRed.waitOutputThreads() Error in Hadoop Streaming Jobs

If you're working on a Hadoop streaming job and you've encountered the error message PipeMapRed.waitOutputThreads() : subprocess failed with code 1, you're not alone. This issue often arises when executing MapReduce programs, especially when using Python scripts. In this guide, we’ll explore the context of the problem and how to resolve it, focusing on a real-world example that involves implementing the Google PageRank algorithm.

Understanding the Problem

The user was utilizing Hadoop version 3.3.4 to run a MapReduce program intended to rank web pages based on their links. The job was executed with a command designed to stream Python scripts as the mapper and reducer. However, the execution resulted in multiple failure messages, including a killed container with an exit code of 137 and a runtime exception in Hadoop's streaming process.

Key Error Messages

Exit Code 137: Indicates that the process was killed, often due to resource constraints or memory limits.

Subprocess Failed with Code 1: This typically means that the mapper or reducer script encountered an error during execution.

Troubleshooting Steps

Here’s a breakdown of how to resolve the error:

1. Installing Dependencies Correctly

The first step in addressing the error was to check the installation of required libraries. The user had included the networkx library for graph operations. However, the installation was done without proper permissions, leading to potential issues:

User installed via pip install networkx

Successful execution occurred only after using sudo pip install networkx

2. Testing Locally

Before running on Hadoop, it’s essential to validate both the mapper and reducer scripts locally to ensure they don’t contain logical errors. The user ran the scripts on a smaller dataset successfully, confirming that the scripts worked as expected when executed in isolation.

3. Reviewing the Scripts for Efficiency

Here are some considerations regarding the provided scripts (mapper.py and reducer.py):

Ensure there are no infinite loops or excessive memory usage.

Review the complexity of graph algorithms when executed as a MapReduce job, as some operations may require global state knowledge or multiple passes.

4. Recognizing Hadoop Limitations

Hadoop's MapReduce paradigm is primarily designed for batch processing, which does not naturally support iterative algorithms like PageRank. This can lead to discrepancies in results when switching from local executions using Python to distributed executions using Hadoop.

Solutions for Future Tasks

Facing challenges with Hadoop for tasks that require iterative computation? Consider these alternatives:

Apache Spark: It’s designed for iterative processing and provides in-memory computations, making it much more efficient for algorithms like PageRank.

Graph Processing Libraries: Utilizing Apache's GraphFrames or other dedicated graph processing frameworks can simplify your tasks considerably.

Conclusion

In summary, the resolution of the PipeMapRed.waitOutputThreads() error involved several troubleshooting steps from ensuring correct dependencies were installed with sufficient permissions, to validating the scripts locally. Recognizing Hadoop's limitations with respect to iterative algorithms also suggests looking for more suitable frameworks like Apache Spark for complex tasks.

By taking these steps, you can not only resolve similar issues but also refine your approach to using distributed processing frameworks effectively.

If you continue facing challenges after these adjustments, consider

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]