Byte Latent Transformer: Patches Scale Better Than Tokens (Paper Explained)

Описание к видео Byte Latent Transformer: Patches Scale Better Than Tokens (Paper Explained)

#tokenization #llm #meta

This paper does away with tokenization and creates an LLM architecture that operates on dynamically sized "patches" instead of tokens. By controlling the patch size, they gain a level of control over the tradeoff between model size and FLOPs and use that to achieve more favorable scaling behavior than classically tokenized LLMs.

Paper: https://ai.meta.com/research/publicat...
Code: https://github.com/facebookresearch/blt

Abstract:
We introduce the Byte Latent Transformer (BLT), a new byte-level LLM architecture that, for the first time, matches tokenization-based LLM performance at scale with significant improvements in inference efficiency and robustness. BLT encodes bytes into dynamically sized patches, which serve as the primary units of computation. Patches are segmented dynamically based on the entropy of the next byte, allocating more compute and model capacity where increased data complexity demands it. We present the first flop controlled scaling study of byte-level models up to 8B parameters with 4T training bytes. Our results demonstrate the feasibility of scaling models trained on raw bytes without a fixed-vocabulary. Both training and inference efficiency improve due to dynamically selecting long patches when data is predictable, along with qualitative improvements on reasoning and long tail generalization. Overall, for fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.



Links:
Homepage: https://ykilcher.com
Merch: https://ykilcher.com/merch
YouTube:    / yannickilcher  
Twitter:   / ykilcher  
Discord: https://ykilcher.com/discord
LinkedIn:   / ykilcher  

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon:   / yannickilcher  
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Комментарии

Информация по комментариям в разработке