Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть ex 9.5 q3 Class 8 Algebraic Expressions and Identitie Find the following squares by using identities

  • Maths Class 8
  • 2023-01-24
  • 104
ex 9.5 q3 Class 8 Algebraic Expressions and Identitie Find the following squares by using identities
  • ok logo

Скачать ex 9.5 q3 Class 8 Algebraic Expressions and Identitie Find the following squares by using identities бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно ex 9.5 q3 Class 8 Algebraic Expressions and Identitie Find the following squares by using identities или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку ex 9.5 q3 Class 8 Algebraic Expressions and Identitie Find the following squares by using identities бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео ex 9.5 q3 Class 8 Algebraic Expressions and Identitie Find the following squares by using identities

ex 9.5 q3 Class 8 Algebraic Expressions and Identities - NCERT - Maths Class 8th - chapter 9
EXERCISE 9.5
1. Use a suitable identity to get each of the following products. (i) (x + 3) (x + 3) (ii) (2y + 5) (2y + 5) (iii) (2a – 7) (2a – 7) (iv) (3a – 1 2 ) (3a – 1 2 ) (v) (1.1m – 0.4) (1.1m + 0.4) (vi) (a2 + b2 ) (– a2 + b2 ) (vii) (6x – 7) (6x + 7) (viii) (– a + c) (– a + c) (x) (7a – 9b) (7a – 9b)
2. Use the identity (x + a) (x + b) = x2 + (a + b) x + ab to find the following products. (i) (x + 3) (x + 7) (ii) (4x + 5) (4x + 1) (iii) (4x – 5) (4x – 1) (iv) (4x + 5) (4x – 1) (v) (2x + 5y) (2x + 3y) (vi) (2a2 + 9) (2a2 + 5) (vii) (xyz – 4) (xyz – 2)
3. Find the following squares by using the identities. (i) (b – 7)2 (ii) (xy + 3z)2 (iii) (6x2 – 5y) (v) (0.4p – 0.5q)2 (vi) (2xy + 5y)2
4. Simplify. (i) (a2 – b2 ) 2 (ii) (2x + 5)2 – (2x – 5)2 (iii) (7m – 8n) 2 + (7m + 8n)2 (iv) (4m + 5n) 2 + (5m + 4n)2 (v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2 (vi) (ab + bc)2 – 2ab2 c (vii) (m2 – n2 m)2 + 2m3 n2
5. Show that. (i) (3x + 7)2 – 84x = (3x – 7)2 (ii) (9p – 5q) 2 + 180pq = (9p + 5q) (iv) (4pq + 3q)2 – (4pq – 3q) 2 = 48pq2 (v) (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0
6. Using identities, evaluate. (i) 712 (ii) 992 (iii) 1022 (iv) 9982 (v) 5.22 (vi) 297 × 303 (vii) 78 × 82 (viii) 8.92 (ix) 1.05 × 9.5
7. Using a2 – b2 = (a + b) (a – b), find (i) 512 – 492 (ii) (1.02)2 – (0.98)2 (iii) 1532 – 1472 (iv) 12.12 – 7.92
8. Using (x + a) (x + b) = x2 + (a + b) x + ab, find (i) 103 × 104 (ii) 5.1 × 5.2 (iii) 103 × 98 (iv) 9.7 × 9.8

Algebraic Expressions and Identities
Algebraic Expressions
Algebraic expressions are the mathematical statement that we get when operations such as addition, subtraction, multiplication, division, etc. are operated upon on variables and constants.

What are Algebraic Expressions?
An algebraic expression (or) a variable expression is a combination of terms by the operations such as addition, subtraction, multiplication, division, etc. 5x + 7 is an example of an algebraic expression. Here are more examples:
5x + 4y + 10
2x2y - 3xy2
(-a + 4b)2 + 6ab

Variables, Constants, Terms, and Coefficients
There are different components of an algebraic expression. Let us have a look at the image given below in order to understand the concept of Variables, Constants, Terms, and Coefficients of any algebraic expression.
In mathematics,
• a symbol that doesn't have a fixed value is called a variable. Some examples of variables in Math are a,b, x, y, z, m, etc.
• On the other hand, a symbol that has a fixed numerical value is called a constant. All numbers are constants. Some examples of constants are 3, 6, -(1/2), √5, etc.
• A term is a variable alone (or) a constant alone (or) it can be a combination of variables and constants by the operation of multiplication or division. Some examples of terms are 3x2, -(2y/3), √(5x), etc.
• Here, the numbers that are multiplying the variables are 3, -2/3, and 5. These numbers are called coefficients.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]