Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering 1D Convolution and FFT: Ensuring Consistency with 'Same' Shape

  • vlogize
  • 2025-02-23
  • 1
Mastering 1D Convolution and FFT: Ensuring Consistency with 'Same' Shape
Using 1D convolutional with same shape so it will work with FFT?convolutionfftmatlabvector
  • ok logo

Скачать Mastering 1D Convolution and FFT: Ensuring Consistency with 'Same' Shape бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering 1D Convolution and FFT: Ensuring Consistency with 'Same' Shape или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering 1D Convolution and FFT: Ensuring Consistency with 'Same' Shape бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering 1D Convolution and FFT: Ensuring Consistency with 'Same' Shape

Discover how to make `1D convolution` match `FFT` outputs using the 'same' shape in MATLAB, ensuring your output data aligns perfectly with your input.
---
This video is based on the question https://stackoverflow.com/q/77726039/ asked by the user 'euraad' ( https://stackoverflow.com/u/1008405/ ) and on the answer https://stackoverflow.com/a/77727873/ provided by the user 'Cris Luengo' ( https://stackoverflow.com/u/7328782/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, comments, revision history etc. For example, the original title of the Question was: Using 1D convolutional with same shape so it will work with FFT?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction

When working with signal processing or data analysis in MATLAB, you might run into a common issue: ensuring that the output of a 1D convolution matches the output when implementing a Fast Fourier Transform (FFT). This problem is especially crucial when you want the output size to remain the same as your input size, a demand often encountered in various applications.

If you're using the command conv(x, k, 'same'), you might notice that it provides results only conforming to the 'full' shape context, but fails to align with 'same'. In this guide, we'll break down the steps to achieve consistency between these two methods and ensure your results are accurate.

Understanding the Problem

In MATLAB, convolution can be performed with three different shapes:

Full: Returns the convolution at each point of overlap, which results in an output larger than the input.

Same: Outputs a result the same size as the input by trimming the output.

Valid: Returns only parts of the convolution that are computed without zero padding.

The challenge arises when we want to ensure the FFT results align similarly to conv(x, k, 'same'). Let's explore what needs to be done in order to achieve this.

Solution Overview

To ensure that the output from FFT matches the conv(x, k, 'same'), adjustments need to be made both during the padding step and after the convolution step. Follow these organized steps for a smoother operation.

1. Zero-Padding the Input Vector

Identify Kernel Length: Let the length of your kernel k be defined as K.

Pad the Input: To mimic the effect of convolution with 'same', you need to pad your input vector x with at least K-1 zeros. This allows for correct dimension alignment.

[[See Video to Reveal this Text or Code Snippet]]

2. Perform the FFT Convolution

Compute FFTs: Perform the FFT on both the padded input vector and the kernel.

[[See Video to Reveal this Text or Code Snippet]]

Multiply in the Frequency Domain: Multiply the transformed inputs in the frequency domain.

[[See Video to Reveal this Text or Code Snippet]]

3. Crop the Result

Since the 'same' operation in convolution centers the kernel on the input, there will be a need to shift the results for alignment.

Determine the shift:

For odd-length kernels, remove (K-1)/2 samples from the left to get your output aligned correctly.

[[See Video to Reveal this Text or Code Snippet]]

Final Output: You can then retrieve your needed output with the correct size as required.

4. Validate Your Results

Finally, it's always important to check that your results are correct. Compare the results of your FFT operation with that of the conventional convolution:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By properly padding your input data, conducting the convolution in the frequency domain, and carefully cropping the results, you can successfully align the outputs of 1D convolution and FFT to match with the 'same' configuration in MATLAB. This strategy ensures consistency and accuracy in your signal processing endeavors.

If you have further questions or need additional assistance, feel free to reach out! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]