Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Predicting Cellular Responses to Perturbation Across Diverse Contexts With STATE by Abhinav Adduri

  • GenBio AI
  • 2025-09-18
  • 407
Predicting Cellular Responses to Perturbation Across Diverse Contexts With STATE by Abhinav Adduri
  • ok logo

Скачать Predicting Cellular Responses to Perturbation Across Diverse Contexts With STATE by Abhinav Adduri бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Predicting Cellular Responses to Perturbation Across Diverse Contexts With STATE by Abhinav Adduri или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Predicting Cellular Responses to Perturbation Across Diverse Contexts With STATE by Abhinav Adduri бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Predicting Cellular Responses to Perturbation Across Diverse Contexts With STATE by Abhinav Adduri

In this talk, Abhinav Adduri presents a framework for predicting perturbation effects conditioned on cell state at the Foundation Models for Biology Seminar Series by GenBio AI. The approach separates a learned representation of cell state from a perturbation-effect component, with an optional ODE-style dynamic to model how effects unfold over time.

Abstract: Cellular responses to perturbations are a cornerstone for understanding biological mechanisms and selecting potential drug targets. While computational models offer tremendous potential for predicting perturbation effects compared to experimental approaches, they currently struggle to generalize effects from experimentally observed cellular contexts to unobserved ones. Here, we introduce State, a machine learning architecture that predicts perturbation effects while accounting for cellular heterogeneity within and across perturbation experiments. State operates across physical scales: it consists of a state transition model that learns perturbation effects across sets of cells using data from over 100 million perturbed cells across 70 cell contexts and a cell embedding model trained on observational single-cell data from 167 million human cells. State improved discrimination of perturbation effects on multiple large datasets by over 50% and identified true differentially expressed genes across genetic, signaling, and chemical perturbations with over 2-fold accuracy compared to existing models. Using its embedding model, State can also identify strong perturbations in novel cellular contexts where no perturbations have been observed during training. We further introduce Cell-Eval, a comprehensive evaluation framework using biologically relevant metrics that highlights how State enables more precise discovery of cell type-specific perturbation responses, such as those related to cell survival. Overall, the performance and flexibility of State sets the stage for scaling the development of virtual cell models.

Paper: https://www.biorxiv.org/content/10.11...
Blog: []

Follow us:
X: https://x.com/genbioai
Linkedin: / genbioai
YouTube: / @genbioai

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]