Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transforming Pandas Dataframes: One Record Per Date with Multiple Prices

  • vlogize
  • 2025-10-06
  • 0
Transforming Pandas Dataframes: One Record Per Date with Multiple Prices
Have only 1 record per date in a pandas dataframepythonpandasdataframe
  • ok logo

Скачать Transforming Pandas Dataframes: One Record Per Date with Multiple Prices бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transforming Pandas Dataframes: One Record Per Date with Multiple Prices или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transforming Pandas Dataframes: One Record Per Date with Multiple Prices бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transforming Pandas Dataframes: One Record Per Date with Multiple Prices

Learn how to restructure a pandas dataframe to maintain `one record per date`, even with multiple trade prices, using Python.
---
This video is based on the question https://stackoverflow.com/q/64036014/ asked by the user 'DISC-O' ( https://stackoverflow.com/u/4515341/ ) and on the answer https://stackoverflow.com/a/64036539/ provided by the user 'Cameron Riddell' ( https://stackoverflow.com/u/14278448/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Have only 1 record per date in a pandas dataframe

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transforming Pandas Dataframes: One Record Per Date with Multiple Prices

In the world of data analysis, particularly in financial data processing, maintaining the integrity of records while handling multiple entries on the same date can be challenging. A common issue arises when you need to display multiple trade prices recorded on the same date. The goal is to filter those entries into unique records while preserving all needed data points. In this guide, we'll tackle how to achieve this with Pandas—a powerful data manipulation library in Python.

Understanding the Problem

When working with trade data, you may encounter situations where multiple trades are logged on the same day for the same asset. For instance, imagine a scenario where you're looking at trade prices that have the same timestamp, as shown below:

TradeDatePrice2018-10-15 06:00:001.159602018-10-29 03:00:001.143302018-10-29 03:00:001.139262018-10-29 06:00:001.140152018-11-15 05:00:001.141302018-11-15 05:00:001.140002018-11-15 05:00:001.14030As can be noticed, the dates 2018-10-29 and 2018-11-15 both have multiple entries. The objective here is to create a format where each date has a unique record despite the multiple prices associated with it.

The Solution

To solve the problem of having multiple records for the same date, we will follow these steps:

Step 1: Create a Cumulative Counter

The first step involves creating a cumulative count of the trades per date. This counter will help us identify how many prices exist for each date and assist in distributing them across separate columns. Using Pandas, we can accomplish this with the groupby() and cumcount() functions. Here’s how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Pivot the Dataframe

After we have the cumulative counter, the next step is to pivot the dataframe, which will allow us to transform rows into columns based on our previous counter. The resulting dataframe will present each unique date with a corresponding price column for each trade.

[[See Video to Reveal this Text or Code Snippet]]

This will yield a new dataframe structured as follows:

TradeDateprice1price2price32018-10-15 06:00:001.15960NaNNaN2018-10-29 03:00:001.143301.13926NaN2018-10-29 06:00:001.14015NaNNaN2018-11-15 05:00:001.141301.140001.14030Final Thoughts

In summary, handling multiple records in a pandas dataframe doesn't have to be a daunting task. By creating a cumulative count of duplicate entries and pivoting the data, you can easily transform your dataframe to maintain unique records per date while ensuring all pertinent trade prices are preserved. This method not only enhances data readability but also ensures better insights during analysis.

By following these steps, you can take control of your data and make it work for you! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]