Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Finding the Exact Value of Trig Functions Using the Sum Identities (MathAngel369)

  • MathAngel369
  • 2022-01-23
  • 197
Finding the Exact Value of Trig Functions Using the Sum Identities (MathAngel369)
  • ok logo

Скачать Finding the Exact Value of Trig Functions Using the Sum Identities (MathAngel369) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Finding the Exact Value of Trig Functions Using the Sum Identities (MathAngel369) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Finding the Exact Value of Trig Functions Using the Sum Identities (MathAngel369) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Finding the Exact Value of Trig Functions Using the Sum Identities (MathAngel369)

✨ Finding the Exact Value of Trig Functions Involving Inverse Trig Functions Using the Sum Identities (MathAngel369)✨

In this discussion, we are going to learn how to find the exact value of trig functions involving inverse trig functions using the sum identities.

In our example, we are given

sin[arctan(-3/5) + arccos(4/5)]

We want to find the exact value of the given expression.

The first thing we want to do is work from the inside out.

Let u=arctan(-3/4), where (-pi/2,pi/2), since the range of inverse tangent is form -pi/2 to pi/2.

Let v=arccos(4/5), where [pi,0], since the range of inverse cosine is between 0 and pi.

Then sin[arctan(-3/5) + arccos(4/5)]

= sin[u+v]

= sinucosv+cosusinv by the sum formula for sine.


Next, we need to find the value of sinu, cosu, and sinv, and we do this by drawing a triangle.

Now, u=arctan(-3/4) means that tanu=-3/4

and v=arccos(4/5) means that cosv=4/5.

Since the angle u is between-pi/2 to pi/2, and tanu= -3/4=y/x is negative, we draw our triangle for u in the fourth quadrant.

Since the angle v is between 0 and pi and cosv=4/5=x/r is positive, we draw the triangle for v in the first quadrant.


Now we use Pythagorean Theorem to find the r value for the angle u and the y value for the angle v.

For the angle u, we know that x^2 +y^2 =r^2.
So, (4)^2 +(-3)^2 =r^2
16+ 9 = r^2
25=r^2
5=r

For the angle v, we know that x^2+y^2=r^2.
So, (4)^2 +y^2 =5^2
16+y^2=25
y^2=9
y=3


Now, sinu=y/r=-3/5
and cosu=x/r=4/5

Similarly, sinv=y/r=3/5
and it is given that cosv=x/r=4/5.

Thus, we can plug in our values into sinucosv+cosusinv.

Hence, we have


sin[arctan(-3/5) + arccos(4/5)]

= sin[u+v]

= sinucosv+cosusinv

= [-3/5][4/5]+[4/5][3/5]

=-12/25+12/25

=0


We have found the exact value of the given trig expression using the sum identity.

Thank you for reading!

I hope that I can assist you on your math journey!

Sincerely,

➕MathAngel369➕




——————————————————————-

🎥 Suggested Video and Playlist:

Video: Deriving the Sum and Difference Formulas for Sine and Cosine

   • Derive! The the Sum and Difference Formula...  


Playlist: Proving/Verifying and Using Trig Identities

   • Proving/Verifying and Using Trig Identities  

________________________________________



📝Blog Post:


Read my blog post associated with this video:

https://www.mathangel369.com/blog/fin...


_______________________________



🔑 Math Course:

Practice is the key! If you would like to become an expert in trig identities, consider taking my math course.

You can preview about 10 minutes of the course for free before purchasing.


Proving/Verifying and Using Trig Identities

https://www.udemy.com/course/proving-...


For a list of all my courses, go to my website:

http://www.mathangel369.com/courses

________________________________



Facebook: @mathangel369

Instagram: @mathangel369

_________________________________

#MathAngel369 #TrigIdentities #Trigonometry

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]