Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding Why NumPy Random Seed Changes with Sample Size

  • vlogize
  • 2025-09-08
  • 0
Understanding Why NumPy Random Seed Changes with Sample Size
NumPy - Random Seed not working when sample size changes?pythonnumpyrandomrandom seed
  • ok logo

Скачать Understanding Why NumPy Random Seed Changes with Sample Size бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding Why NumPy Random Seed Changes with Sample Size или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding Why NumPy Random Seed Changes with Sample Size бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding Why NumPy Random Seed Changes with Sample Size

Learn why your `NumPy` random seed might not produce the same results with different sample sizes, and explore effective ways to maintain reproducibility in your random number generation.
---
This video is based on the question https://stackoverflow.com/q/63345335/ asked by the user 'Jonathan Ross' ( https://stackoverflow.com/u/14082359/ ) and on the answer https://stackoverflow.com/a/63345489/ provided by the user 'Prune' ( https://stackoverflow.com/u/4785185/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: NumPy - Random Seed not working when sample size changes?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding NumPy Random Seed Behavior with Sample Size Changes

When working with random numbers in Python, especially using the NumPy library, you may encounter a common question: Why does changing the sample size affect the output of random numbers, even after setting a seed? This question can lead to confusion, particularly for those using random number generation in simulations or statistical analyses. Let's dive into understanding this phenomenon and explore how you can maintain consistency in your random number generation.

The Role of Seeds in Random Number Generation

Before addressing the specific issue, it's essential to know how seeds work in random number generators (RNGs). A seed is essentially a starting point for the sequence of random numbers generated. When you set a seed using np.random.seed(value), you establish a fixed point in the random number sequence, ensuring that you can reproduce the exact sequence later.

Here's how it works:

Deterministic Behavior: By setting a seed, you make the random number generation reproducible. The sequence of numbers generated after setting the seed will always be the same for that particular seed value.

Sequential Updates: Each time you generate a random number, the seed is updated. This means the next random number generated depends on the previous one.

The Impact of Sample Size on Random Number Generation

Now, when you change the sample size in your random number generation, you're not just altering how many numbers you're generating; you are also affecting the sequence of random numbers produced. Let's analyze your code:

[[See Video to Reveal this Text or Code Snippet]]

Code Explanation:

In this example, two random lists are generated using np.random.randint().

Each time you call np.random.randint(), it generates a number according to the previous ones in the sequence, updating the seed accordingly.

By changing sample_size from 3000 to 5000, you're affecting how many times the seed is updated before creating random_list_2.

What Happens When Sample Size Changes:

When the sample size is increased, it changes which numbers are produced due to how the seed is updated.

If you set the sample size to 5000, random_list_2 begins its sequence later than if you use a size of 3000. Specifically, it starts from where random_list_1 ended, resulting in different numbers for random_list_2 each time you change sample size.

Maintaining Consistency Across Sample Sizes

To ensure that you have consistent results in random_list_2 regardless of changes in sample_size, consider the following strategies:

Use Separate Seeds

Set a new seed for random_list_2 directly:

[[See Video to Reveal this Text or Code Snippet]]

Switch the Order of Calls

Alternatively, switch the order in which you generate the random numbers:

[[See Video to Reveal this Text or Code Snippet]]

By adopting either of these methods, you can ensure that random_list_2 remains predictable and reproducible, regardless of changes in sample_size.

Conclusion

The behavior of NumPy's random seed in relation to sample size changes highlights the intricacies of random number generation. Understanding how seeds and sample sizes interact is crucial for maintaining reproducibility in your work. By using separate seeds or adjusting the order of function calls, you can control the output of random lists effectively.

With these insights, you can now tackle random number generation tasks with confidence, knowing how to achieve consistent results across varying sample sizes.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]