Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть [2024 Best AI Paper] Text2SQL is Not Enough: Unifying AI and Databases with TAG

  • Paper With Video
  • 2024-10-21
  • 289
[2024 Best AI Paper] Text2SQL is Not Enough: Unifying AI and Databases with TAG
  • ok logo

Скачать [2024 Best AI Paper] Text2SQL is Not Enough: Unifying AI and Databases with TAG бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно [2024 Best AI Paper] Text2SQL is Not Enough: Unifying AI and Databases with TAG или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку [2024 Best AI Paper] Text2SQL is Not Enough: Unifying AI and Databases with TAG бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео [2024 Best AI Paper] Text2SQL is Not Enough: Unifying AI and Databases with TAG

This video was created using https://paperspeech.com. If you’d like to create explainer videos for your own papers, please visit the website!

Title: Text2SQL is Not Enough: Unifying AI and Databases with TAG

Authors: Asim Biswal, Liana Patel, Siddarth Jha, Amog Kamsetty, Shu Liu, Joseph E. Gonzalez, Carlos Guestrin, Matei Zaharia

Abstract:
AI systems that serve natural language questions over databases promise to
unlock tremendous value. Such systems would allow users to leverage the
powerful reasoning and knowledge capabilities of language models (LMs)
alongside the scalable computational power of data management systems. These
combined capabilities would empower users to ask arbitrary natural language
questions over custom data sources. However, existing methods and benchmarks
insufficiently explore this setting. Text2SQL methods focus solely on natural
language questions that can be expressed in relational algebra, representing a
small subset of the questions real users wish to ask. Likewise,
Retrieval-Augmented Generation (RAG) considers the limited subset of queries
that can be answered with point lookups to one or a few data records within the
database. We propose Table-Augmented Generation (TAG), a unified and
general-purpose paradigm for answering natural language questions over
databases. The TAG model represents a wide range of interactions between the LM
and database that have been previously unexplored and creates exciting research
opportunities for leveraging the world knowledge and reasoning capabilities of
LMs over data. We systematically develop benchmarks to study the TAG problem
and find that standard methods answer no more than 20% of queries correctly,
confirming the need for further research in this area. We release code for the
benchmark at https://github.com/TAG-Research/TAG-B....

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]