Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть A High-Bias, Low-Variance Introduction to Machine Learning for Physicists

  • Paper Bytes
  • 2025-11-27
  • 3
A High-Bias, Low-Variance Introduction to Machine Learning for Physicists
  • ok logo

Скачать A High-Bias, Low-Variance Introduction to Machine Learning for Physicists бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно A High-Bias, Low-Variance Introduction to Machine Learning for Physicists или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку A High-Bias, Low-Variance Introduction to Machine Learning for Physicists бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео A High-Bias, Low-Variance Introduction to Machine Learning for Physicists

Machine learning meets physics in this 122-page masterclass that uses the bias-variance tradeoff as its organizing principle - and the clever title reveals the teaching strategy itself.​​

🔍 What You'll Learn:

Why "High-Bias"? The Meta-Lesson:

In ML, "bias" is usually the villain - so why embrace it in the title?​

The authors deliberately simplify using carefully chosen examples​

Goal: readers gain clear, low-variance understanding of core concepts​

It's a brilliant teaching strategy disguised as a physics paper​​

The Physics Data Problem:

Large Hadron Collider generates petabytes of data (20 million filing cabinets worth)​

Physicists need powerful tools to find signals in the noise​​

Big data explosion makes ML essential for discovery​

Core Concept: The Bias-Variance Tradeoff

The fundamental tension in all ML - balancing fit vs. generalization:​​

High bias (underfitting):

Too many simplifying assumptions​

Misses details in training data but generalizes better​

High variance (overfitting):

Complex model fits training data perfectly​

Fails on new data - memorizes instead of learning​

Controlling Complexity: Regularization

Think of it as "putting a leash on your model":​

Ridge (L2) Regularization:

Shrinks noisy parameters toward zero​

Tames complexity without elimination​

Lasso (L1) Regularization:

Forces parameters to exactly zero - aggressive feature selection​​

Doesn't just shrink - it eliminates​

Physics Example: Learning the Ising Model

Can ML reverse-engineer physics from data?​​

Setup: Given spin configurations and energies, discover that spins interact only with nearest neighbors​

Experiment progression:

Low regularization (λ ≈ 0): Interaction matrix buried in noise - signal hidden, classic overfit​

Optimal λ: Background clears, beautiful diagonal emerges - algorithm discovered nearest-neighbor physics from data alone​

Excessive λ: Model too simple, real signal eliminated - underfit, learned nothing​

Broader ML Toolkit Covered:

Supervised Learning:

Gradient descent and optimization​

Ensemble methods (bagging, boosting) - "wisdom of crowds" for lower variance​​

Deep neural networks with millions/billions of parameters​

Dropout and regularization essential for DNNs to avoid memorization​

Unsupervised Learning:

PCA (Principal Component Analysis) - finds most important data dimensions​​

K-means clustering - groups similar data automatically​

Energy-based models (MaxEnt, Restricted Boltzmann Machines)​

Physics-ML Connections Emphasized Throughout:

Statistical mechanics concepts map naturally to ML​

Physics-inspired datasets: Ising Model, Monte Carlo simulations of supersymmetric particle decays​

20 Python Jupyter notebooks with hands-on examples​

The Mind-Blowing Implication:
An algorithm discovered a fundamental law of physics (nearest-neighbor interactions) just by analyzing data. What other natural laws are hidden in our datasets, waiting to be uncovered?​

Key Takeaways:

Bias-variance tradeoff is the fundamental ML challenge​

Regularization (L1/L2) is your control knob for model complexity​

Physics problems build deep ML intuition​

With massive datasets, ML is essential for scientific discovery​

📄 Paper: Mehta et al., Physics Reports 810 (2019) 1-124
🔗 arXiv:1803.08823 | Notebooks: physics.bu.edu/~pankajm/MLnotebooks.html

#MachineLearning #Physics #BiasVariance #Regularization #DeepLearning #StatisticalPhysics #IsingModel #DataScience #ComputationalPhysics

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]