Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть [CVPR16] Accelerated Generative Models for 3D Point Cloud Data

  • Kihwan Kim
  • 2016-03-30
  • 2082
[CVPR16] Accelerated Generative Models for 3D Point Cloud Data
CVPRPoint Cloud3D VisionGPUGaussian Mixture ModelComputer VisionCVPR 2016
  • ok logo

Скачать [CVPR16] Accelerated Generative Models for 3D Point Cloud Data бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно [CVPR16] Accelerated Generative Models for 3D Point Cloud Data или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку [CVPR16] Accelerated Generative Models for 3D Point Cloud Data бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео [CVPR16] Accelerated Generative Models for 3D Point Cloud Data

This paper will be presented in IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016) in Las Vegas, ND.

Project page:
https://research.nvidia.com/publicati...

Authors:
Ben Eckart, Kihwan Kim, Alejandro Troccoli, Alonzo Kelly, Jan Kautz

Abstract:
Finding meaningful, structured representations of 3D point cloud data (PCD) has become a core task for spatial perception applications. In this paper we introduce a method for constructing compact generative representations of PCD at multiple levels of detail. As opposed to deterministic structures such as voxel grids or octrees, we propose probabilistic subdivisions of the data through local mixture modeling, and show how these subdivisions can provide a maximum likelihood segmentation of the data. The final representation is hierarchical, compact, parametric, and statistically derived, facilitating run-time occupancy calculations through stochastic sampling. Unlike traditional deterministic spatial subdivision methods, our technique enables dynamic creation of voxel grids according the application’s best needs. In contrast to other generative models for PCD, we explicitly enforce sparsity among points and mixtures, a technique which we call expectation sparsification. This leads to a highly parallel hierarchical Expectation Maximization (EM) algorithm well-suited for the GPU and real-time execution. We explore the trade-offs between model fidelity and model size at various levels of detail, our tests showing favorable performance when compared to octree and NDT-based methods.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]