Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть 2000-04-07 CERIAS - Machine Learning Techniques for Anomaly Detection in Computer Security

  • Purdue CERIAS
  • 2013-08-29
  • 334
2000-04-07 CERIAS - Machine Learning Techniques for Anomaly Detection in Computer Security
CybersecurityInformation SecurityComputer SecurityPurdueCERIAS
  • ok logo

Скачать 2000-04-07 CERIAS - Machine Learning Techniques for Anomaly Detection in Computer Security бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно 2000-04-07 CERIAS - Machine Learning Techniques for Anomaly Detection in Computer Security или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку 2000-04-07 CERIAS - Machine Learning Techniques for Anomaly Detection in Computer Security бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео 2000-04-07 CERIAS - Machine Learning Techniques for Anomaly Detection in Computer Security

Recorded: 04/07/2000
CERIAS Security Seminar at Purdue University

Machine Learning Techniques for Anomaly Detection in Computer Security

Terran Lane, Purdue University

With the recent phenomenal growth of the availability and connectivity of computing resources and the advent of e-commerce, more valuable and private data is being stored online than ever before. But with greater value and availability comes greater threat. In this talk we examine the information security problem of anomaly detection --- recognizing the occurrence of ``out of the ordinary'' events which may prove to be hazardous. We evaluate this problem as a machine learning task and describe the application of two machine learning techniques: instance-based learning (IBL) and hidden Markov models (HMMs). This work focuses on anomaly detection at the user level (as opposed to the network or system call level), which introduces a number of interesting and complex issues from a machine learning standpoint. In particular, we explore privacy, resource constraints, non-stationarity (a.k.a. concept drift), and performance issues and give empirical analyses based on real user data. We close with some thoughts on extensions to this work and on other areas of application.

graduated from Ballard High School (Louisville, KY) in 1990 and entered the department of Electrical and Computer Engineering (then the department of Electrical Engineering) at Purdue University (West Lafayette, IN) in the fall of that year. I have been here ever since, attaining my bachelor\'s (BSCEE == Bachelor of Science in Computer and Electrical Engineering) in May of 1994. I immediately plunged into the PhD program, and am currently working toward that degree under the direction of Professor Carla Brodley.

Some notes on my Research are available.
(Visit: www.cerias.purdue.edu)

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]