Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Speed Up Mean Autocorrelation Calculations in NumPy with Vectorization Techniques

  • vlogize
  • 2025-05-19
  • 0
Speed Up Mean Autocorrelation Calculations in NumPy with Vectorization Techniques
Is it possible to speed up this mean autocorrelation calculation in numpy using vectorization?pythonnumpyvectorizationautocorrelation
  • ok logo

Скачать Speed Up Mean Autocorrelation Calculations in NumPy with Vectorization Techniques бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Speed Up Mean Autocorrelation Calculations in NumPy with Vectorization Techniques или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Speed Up Mean Autocorrelation Calculations in NumPy with Vectorization Techniques бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Speed Up Mean Autocorrelation Calculations in NumPy with Vectorization Techniques

Discover how to enhance the performance of mean autocorrelation calculations in NumPy using vectorization techniques and a custom correlation function. Achieve significant speed improvements easily!
---
This video is based on the question https://stackoverflow.com/q/71932846/ asked by the user 'SHD' ( https://stackoverflow.com/u/18871480/ ) and on the answer https://stackoverflow.com/a/71934146/ provided by the user 'Michael Hodel' ( https://stackoverflow.com/u/12363750/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Is it possible to speed up this mean autocorrelation calculation in numpy using vectorization?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Speed Up Mean Autocorrelation Calculations in NumPy with Vectorization Techniques

Are you struggling with slow mean autocorrelation calculations using NumPy? With time series data frequently found in various analytical applications, improving performance can lead to significant gains in efficiency. This guide aims to provide an optimized solution that can help speed up your calculations by using vectorization, which is a technique that takes advantage of NumPy's ability to handle operations on entire arrays rather than individual elements.

The Original Problem

You might have a large dataset consisting of multiple time series. For example, consider an input matrix X of shape (100, 3000), where 100 represents the number of days and 3000 denotes the number of items. The goal is to compute the mean (across the 3000 items) of the lag-5 autocorrelation for each item:

[[See Video to Reveal this Text or Code Snippet]]

The above code computes the autocorrelation using loops, leading to a significant runtime of approximately 0.355 seconds for this operation.

The Optimized Solution: Vectorization with fast_corrcoef

To improve the runtime, we can replace the built-in np.corrcoef with a custom function called fast_corrcoef. This function will minimize redundant computations and effectively utilize NumPy's capabilities.

Key Improvements in fast_corrcoef

Reduced Redundant Calculations: The function avoids unnecessary computations of averages by calculating them more efficiently using intermediate sums.

Optimized Covariance Calculation: Since covariance matrices are symmetric, we eliminate unnecessary operations, reducing the number of dot products required.

Here is a breakdown of the custom function:

[[See Video to Reveal this Text or Code Snippet]]

Implementation Steps

Define the Fast Function: Begin by creating a convenient function around your data.

Measure Performance Against the Original Implementation: Validate the speedup by comparing the runtime of the original and optimized implementations.

Below is the complete implementation to speed up the autocorrelation calculation:

[[See Video to Reveal this Text or Code Snippet]]

On running this implementation, the expected output would show a meaningful speed boost:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By understanding and utilizing vectorization techniques in NumPy, you can dramatically reduce the runtime of autocorrelation calculations. The custom fast_corrcoef function significantly enhances performance compared to the original method, providing an improvement of over 3 times in speed! These optimizations not only save computation time but can also lead to enhanced capabilities in working with larger datasets efficiently.

Now it's time to implement these techniques in your own projects, and experience the performance benefits firsthand!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]