Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Efficiently Replace Elements in a DataFrame List Based on Another DataFrame

  • vlogize
  • 2025-05-25
  • 0
How to Efficiently Replace Elements in a DataFrame List Based on Another DataFrame
Replace elements in a list in a dataframe matching elements in a list in another dataframe with matcpythonpython 3.xpandasdataframe
  • ok logo

Скачать How to Efficiently Replace Elements in a DataFrame List Based on Another DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Efficiently Replace Elements in a DataFrame List Based on Another DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Efficiently Replace Elements in a DataFrame List Based on Another DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Efficiently Replace Elements in a DataFrame List Based on Another DataFrame

Discover how to replace elements in a pandas DataFrame list by matching items with another DataFrame using Python, including sample codes for efficient execution.
---
This video is based on the question https://stackoverflow.com/q/72769690/ asked by the user 'nerd' ( https://stackoverflow.com/u/18313588/ ) and on the answer https://stackoverflow.com/a/72769741/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Replace elements in a list in a dataframe matching elements in a list in another dataframe with matching column value

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Efficiently Replace Elements in a DataFrame List Based on Another DataFrame

If you're working with pandas DataFrames in Python and need to replace elements in a list based on matching values from another DataFrame, you might find yourself facing a common challenge. This post will guide you through a straightforward solution to this problem with clear explanations, step-by-step instructions, and performance insights.

The Problem Statement

Imagine you have two pandas DataFrames: df1 and df2. df1 contains two columns: name and duplicates. The duplicates column holds lists of values that you want to replace in the fruits column of df2. Specifically, for any value in the fruits column that matches an element from the duplicates list, you'd like to replace it with the corresponding value from the name column in df1.

Sample DataFrames

DataFrame df1:

[[See Video to Reveal this Text or Code Snippet]]

DataFrame df2:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output

Your output should look like this after performing the replacements:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To achieve this transformation efficiently, you can create a dictionary that maps each value in duplicates to its corresponding name. Then, iterate through the fruits in df2, replacing values based on the mapping you created. Let's break this down into clear steps:

Step 1: Create a Mapping Dictionary

Start by flattening the values in the duplicates column of df1 and use a dictionary comprehension to create a mapping from the duplicate values to their corresponding names.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Replace Values in the Fruits Column

Use a list comprehension to replace each fruit in the fruits column of df2 based on the mapping dictionary. If a fruit doesn’t have a match in the dictionary, keep its original value.

[[See Video to Reveal this Text or Code Snippet]]

Final Code

Combining both steps, your complete code to perform this operation looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Performance Insights

In terms of performance, we can observe that using dictionary mapping significantly speeds up the process. The following timing illustrates this efficiency:

Using dictionary comprehension: 5.27 ms per loop on average.

Using DataFrame operations like explode and groupby: often slower, at around 128 ms per loop.

Choose the approach that best fits your dataset size and performance needs!

Conclusion

Now you have a reliable method to replace elements in a DataFrame list based on another DataFrame using pandas in Python. This approach combines clarity and efficiency, making your data manipulation tasks much simpler and faster. Be sure to test this with your own datasets to see the benefits firsthand!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]