Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Remove Values from Array Type Columns in PySpark DataFrame Based on Another Column

  • vlogize
  • 2025-10-01
  • 1
How to Remove Values from Array Type Columns in PySpark DataFrame Based on Another Column
How to remove values of an array type column based on another column in a PySpark dataframe?pythonapache sparkpyspark
  • ok logo

Скачать How to Remove Values from Array Type Columns in PySpark DataFrame Based on Another Column бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Remove Values from Array Type Columns in PySpark DataFrame Based on Another Column или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Remove Values from Array Type Columns in PySpark DataFrame Based on Another Column бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Remove Values from Array Type Columns in PySpark DataFrame Based on Another Column

Learn how to manipulate array type columns in PySpark DataFrames. This guide explores removing values from arrays based on a comparison column and returning specific results.
---
This video is based on the question https://stackoverflow.com/q/63901577/ asked by the user 'Cowboy_Owl' ( https://stackoverflow.com/u/10412418/ ) and on the answer https://stackoverflow.com/a/63904163/ provided by the user 'Hans' ( https://stackoverflow.com/u/909227/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to remove values of an array type column based on another column in a PySpark dataframe?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Remove Values from Array Type Columns in PySpark DataFrame Based on Another Column

When working with data, especially in large datasets managed by Apache Spark, it’s common to encounter situations where you need to filter data based on conditions present in other columns. A typical scenario is needing to remove certain values in an array type column based on corresponding values in another column. In this guide, we will guide you through a practical example of this problem using PySpark.

The Problem

Suppose you have a PySpark DataFrame containing two columns:

A Date column that holds a single date.

An Array_of_dates column that includes multiple dates in an array format.

Here’s an example of what a sample row looks like:

[[See Video to Reveal this Text or Code Snippet]]

The task is to create a new column called Smallest_higher_date, which will include the minimum date from the Array_of_dates that is greater than the Date. If we apply this logic to our sample data, the expected result would look like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To solve this problem, we’ll take advantage of User Defined Functions (UDFs) in PySpark. UDFs allow you to define custom operations in Python and apply them to DataFrames. Here are the steps we'll follow:

Step 1: Define the UDF

The first step is to create a UDF that will accept two columns: date and array_of_dates. The function within the UDF will filter the array to keep only those dates that are greater than the given date.

Here’s the code to define this UDF:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Apply the UDF

Now that we have our UDF defined, we can apply it to the DataFrame to create a new column called dates_after_date that will hold the filtered array.

Here's how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Find the Smallest Higher Date

Finally, to get the smallest higher date from the newly created column, you can use the array_min function to retrieve the minimum date from the filtered array.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using this method, you can effectively filter out values in an array column based on another column's values and retrieve the desired result. By employing UDFs, we harness the flexibility of Python within the PySpark environment, allowing for complex data manipulations.

This approach is powerful when dealing with time series data or any scenario involving date comparisons within arrays. With thoughtful application of functions, PySpark can make handling large datasets both efficient and intuitive!

Feel free to implement this solution in your projects and adapt it as necessary based on your specific data needs.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]