Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Efficiently Compare N-Grams to Identify Duplicate Entries in Python

  • vlogize
  • 2025-10-02
  • 2
How to Efficiently Compare N-Grams to Identify Duplicate Entries in Python
  • ok logo

Скачать How to Efficiently Compare N-Grams to Identify Duplicate Entries in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Efficiently Compare N-Grams to Identify Duplicate Entries in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Efficiently Compare N-Grams to Identify Duplicate Entries in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Efficiently Compare N-Grams to Identify Duplicate Entries in Python

Discover how to use n-grams to find and group duplicate book titles in Python. This guide provides step-by-step code examples and explanations.
---
This video is based on the question https://stackoverflow.com/q/63898106/ asked by the user 'Ahmad Ismail' ( https://stackoverflow.com/u/1772898/ ) and on the answer https://stackoverflow.com/a/63922492/ provided by the user 'Ahmad Ismail' ( https://stackoverflow.com/u/1772898/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: compare n-grams to group duplicates

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Efficiently Compare N-Grams to Identify Duplicate Entries in Python

Duplicate entries in datasets can lead to inefficiencies and inaccuracies, especially when dealing with textual information. In this guide, we'll explore how to identify duplicates among book titles using the concept of n-grams. N-grams are a powerful tool in Natural Language Processing (NLP) that allow us to break down text into sequences of items, enabling effective comparison of phrases.

Understanding the Problem

Imagine you have a list of book titles, and you want to determine which ones are duplicates. In this example dataset, titles differ slightly yet contain overlapping phrases. For instance:

Title 1: A Course of Pure Mathematics by G. H. Hardy

Title 9: A Course of Pure Mathematics (Cambridge Mathematical Library) 10th Edition by G. H. Hardy

Both titles share the phrase "course of pure mathematics," indicating they are duplicates. The goal is to devise a script that identifies such matches effectively.

Solution Overview

To solve this problem, we'll create a Python script that processes the book titles using n-grams. Here’s a breakdown of how we’ll accomplish this.

Step 1: Load and Clean the Data

We need to read the titles from a text file, normalize the text (lowercase, remove punctuation), and eliminate common stopwords. Here’s how we can do that:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Generate N-Grams

Once the titles are clean, we can create n-grams (in this case, trigrams) for each title. N-grams are contiguous sequences of n items; trigrams will help us find overlapping phrases.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Identify Duplicates

Now, we will compare these n-grams to identify duplicates. The idea is to check if any n-gram from one title set has overlaps with n-grams from another title set.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Execute and Review Results

By executing this complete script, you’ll generate output that groups duplicate titles smoothly. The output will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using n-grams in Python allows for a robust comparison of textual data, effectively identifying and grouping duplicates. With these techniques, clean data and accurate analysis become much easier, enhancing the reliability of your datasets.

This method can be adapted to various applications where duplicate detection in textual data is essential. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]