Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Build an AI/ML Football Analysis system with YOLO, OpenCV, and Python

  • Code In a Jiffy
  • 2024-04-18
  • 730406
Build an AI/ML Football Analysis system with YOLO, OpenCV, and Python
object detectionobject detection tutorialobject detection pythonmachine learningcomputer visionpythonyolov8yoloconvolutional neural networkmachine learning projectspytorchtutorialdeep learningobject trackingopencv pythonperspective transformation opencv python
  • ok logo

Скачать Build an AI/ML Football Analysis system with YOLO, OpenCV, and Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Build an AI/ML Football Analysis system with YOLO, OpenCV, and Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Build an AI/ML Football Analysis system with YOLO, OpenCV, and Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Build an AI/ML Football Analysis system with YOLO, OpenCV, and Python

In this video, you'll learn how to use machine learning, computer vision and deep learning to create a football analysis system. This project utilizes YOlO a state of the art object detector to detect the players, referees and footballs. It also utilizes trackers to track those object across frames. We also train our own object detector to enhance the output of the state-of-the-art models. Additionally, we will assign players to teams based on the colors of their t-shirts using Kmeans for pixel segmentation and clustering. We will also use optical flow to measure camera movement between frames, enabling us to accurately measure a player's movement. Furthermore, we will implement perspective transformation to represent the scene's depth and perspective, allowing us to measure a player's movement in meters rather than pixels. Finally, we will calculate a player's speed and the distance covered. This project covers various concepts and addresses real-world problems, making it suitable for both beginners and experienced machine learning engineers.

In this video you will learn how to:
1. Use ultralytics and YOLOv8 to detect objects in images and videos.
2. Fine tune and train your own YOLO on your own custom dataset.
3. Use KMeans to cluster pixles and segment players from the background to get the t-shirt color accurately.
4. Use optical flow to measure the camera movement.
5. Use CV2's (opencv) perspective transformation to represent the scene's depth and perspective.
6. Measure player's speed and distance covered in the image.

Datasets:
kaggle Dataset: https://www.kaggle.com/competitions/d...
Video link used because Kaggle removed the videos from the kaggle dataset above: https://drive.google.com/file/d/1t6ag...
Robowflow Football Dataset: https://universe.roboflow.com/roboflo...

Github Link: https://github.com/abdullahtarek/foot...

🔑 TIMESTAMPS
================================
0:00 - Introduction
1:19 - Object detection (YOLO) and tracking
1:55:30 - Player color assignment
2:32:00 - Ball interpolation
3:06:25 - Camera movement estimator
3:41:50 - Perspective Transformer
4:05:40 - Speed and distance Estimator

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]