how to build data pipelines with data load tool (dlt) | data pipeline | etl | Python

Описание к видео how to build data pipelines with data load tool (dlt) | data pipeline | etl | Python

In this video we are covering an exciting new Python library. We have covered the data build tool commonly known as dbt. It is a data transformation python library. It decopuled the Extract, Transform and Load process or ETL. This covered the T in the ETL. We are left wanting for the EL process. Now we have the data load tool library in Python. This as the name suggests does the Extract and Load part. This library is commonly referred to as dlt.A perfect companion for dbt.
dlt is an open-source library that we can add to our Python scripts to load data from various data sources into well-structured datasets.

Links to related material.

Link to GitHub repo: https://github.com/hnawaz007/pythonda...

dlt docs: https://dlthub.com/docs/intro

Postgres installation video:    • How to install PostgreSQL  on windows...  
SQL Server Installation vidoe:    • Install SQL Server Express 2019 Step ...  

dbt series: https://hnawaz007.github.io/mds.html

Link to related aritcle on medium:   / data-load-tool-dlt-a-python-library-for-ex...  


Link to Channel's site:
https://hnawaz007.github.io/
--------------------------------------------------------------

💥Subscribe to our channel:
   / haqnawaz  

📌 Links
-----------------------------------------
#️⃣ Follow me on social media! #️⃣

🔗 GitHub: https://github.com/hnawaz007
📸 Instagram:   / bi_insights_inc  
📝 LinkedIn:   / haq-nawaz  
🔗   / hnawaz100  
🚀 https://hnawaz007.github.io/

-----------------------------------------

#ETL #python #dlt

Topics in this video (click to jump around):
==================================
0:00 - Introduction to data load tool (dlt)
1:16 - Getting Started (Install)
1:46 - Review Great Expectation Data Quality Tests
2:10 - Setup Example project
2:23 - Configure Secrets
2:46 - Prerequisites
3:00 - Build dlt pipeline
4:41 - Run the dlt pipeline
4:59 - Test pipelines results

Комментарии

Информация по комментариям в разработке