Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the Order of MATLAB Operators: The Transpose and ML Divide Operators

  • vlogize
  • 2025-05-25
  • 1
Understanding the Order of MATLAB Operators: The Transpose and ML Divide Operators
Ordering of MATLAB operatormatlabmatrix multiplicationmatrix inverse
  • ok logo

Скачать Understanding the Order of MATLAB Operators: The Transpose and ML Divide Operators бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the Order of MATLAB Operators: The Transpose and ML Divide Operators или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the Order of MATLAB Operators: The Transpose and ML Divide Operators бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the Order of MATLAB Operators: The Transpose and ML Divide Operators

Dive into the intricacies of MATLAB operator precedence and learn how the transpose operator and the ml divide operator interact!
---
This video is based on the question https://stackoverflow.com/q/71121256/ asked by the user 'Danny Han' ( https://stackoverflow.com/u/9042297/ ) and on the answer https://stackoverflow.com/a/71122404/ provided by the user 'Lucien Xhh' ( https://stackoverflow.com/u/14868956/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Ordering of MATLAB operator

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Order of MATLAB Operators

Working with MATLAB can sometimes lead to confusion, especially when it comes to understanding the order of operations. One common scenario is using the transpose operator in conjunction with the ml divide operator. If you’ve ever stumbled upon this while sifting through code, you’re not alone.

In this guide, we will explore a situation where these operators interact and clarify why they may not behave as expected.

The Problem

Consider the following MATLAB code snippet:

[[See Video to Reveal this Text or Code Snippet]]

You might run this code multiple times because the inverse may not always exist, resulting in different outputs.

Upon analyzing the output, a question arises: Why does C\D', which is computed with the transpose operator applied first, not yield the result one might expect? Specifically, it seems like it should find an x such that C = (D')*x, but the expression C - (D')*x does not yield zero.

This issue stems from a misunderstanding of how these operators work in MATLAB.

Understanding the Operators

To clarify the confusion, let's break down the operators in question:

The ml Divide Operator (\)

The expression A \ B in MATLAB is equivalent to inv(A) * B. This means when you use the ml divide operator, MATLAB is effectively calculating the inverse of the first operand (when it's invertible) and then multiplying it by the second operand.

The Transpose Operator (')

The transpose operator changes the orientation of a matrix. For any matrix D, D' represents its transpose.

The ml Multiply Operator (*)

The regular multiplication operator * works in the standard mathematical fashion, where you multiply matrices as per matrix multiplication rules.

Diving Deeper Into the Code

Let’s analyze the original code:

[[See Video to Reveal this Text or Code Snippet]]

This piece is correct because you are calculating X to be the product of matrix C with the inverse of D'. Thus, when you compute C - X * D', it evaluates to zero due to the properties of matrix multiplication involving inverses.

Now, let’s look at the other part of the code:

[[See Video to Reveal this Text or Code Snippet]]

Here, Y is computed differently. Instead of directly relating C to Y, you need to take into account that the multiplication with D' will yield something different than if you had used the variable X. This happens because inv(C) does not relate to how D' and C were initially structured in your operation.

Conclusion

Understanding the order of operations, especially when involving the transpose and ml divide operators in MATLAB, is crucial in preventing confusion and errors in calculations.

To summarize:

Remember that A \ B computes inv(A) * B, while B / A computes B * inv(A).

When working with transposes in this context, the results can be unintuitive if not carefully analyzed.

While MATLAB is a powerful tool for matrix computations, always keep the operator precedence in mind to avoid unexpected results!



Feel free to ask any further questions in the comments below or share your own experiences with MATLAB coding mishaps!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]