Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Semi-Reward Function Problems in Reinforcement Learning

  • Computer Science & IT Conference Proceedings
  • 2024-08-02
  • 24
Semi-Reward Function Problems in Reinforcement Learning
Reinforcement LearningReward FunctionReward EngineeringTransformer-based AgentGoal-based Agent
  • ok logo

Скачать Semi-Reward Function Problems in Reinforcement Learning бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Semi-Reward Function Problems in Reinforcement Learning или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Semi-Reward Function Problems in Reinforcement Learning бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Semi-Reward Function Problems in Reinforcement Learning

Semi-Reward Function Problems in Reinforcement Learning

Dong-geon Lee and Hyeoncheol Kim, Korea University, Republic of Korea

Abstract

Applying reinforcement learning agents to the real-world is important. Designing the reward function has problems, especially when it needs to intricately reflect the real-world or requires burden human effort. Under such circumstances, we propose a semi-reward function. This system is intended that each agent can go toward an individual goal when a collective goal is not defined in advance. The semi-reward function, does not require sophisticated reward design, is defined by 'not allowed actions' in the environments without any information about the goal. A tutorial-based agent can sequentially determine actions based on its current state and individual goal. It can be learned through a semi-reward function and toward its own goal. For the combination of these two, we constructed training method to reach the goal. We demonstrate that agents trained in arbitrary environments could go toward it own goal even if they are given different goals in different environments.

Keywords

Reinforcement Learning, Reward Function, Reward Engineering, Transformer-based Agent, Goal-based Agent

Full Text : https://aircconline.com/csit/papers/v...
Abstract URL : https://aircconline.com/csit/abstract...
Volume URL : https://airccse.org/csit/V14N14.html

#reinforcementlearning #artificialintelliegence #machinelearning #chatgpt

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]