Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Conditionally Drop Rows in a Pandas Dataframe Based on Neighboring Values

  • vlogize
  • 2025-09-22
  • 0
How to Conditionally Drop Rows in a Pandas Dataframe Based on Neighboring Values
Conditionally drop Pandas Dataframe rowpythonpython 3.xpandasdataframe
  • ok logo

Скачать How to Conditionally Drop Rows in a Pandas Dataframe Based on Neighboring Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Conditionally Drop Rows in a Pandas Dataframe Based on Neighboring Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Conditionally Drop Rows in a Pandas Dataframe Based on Neighboring Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Conditionally Drop Rows in a Pandas Dataframe Based on Neighboring Values

Learn how to conditionally drop rows from a Pandas DataFrame where the surrounding rows have the same values in a specific column. This guide breaks down the process for clarity.
---
This video is based on the question https://stackoverflow.com/q/62933997/ asked by the user 'Gustav Rasmussen' ( https://stackoverflow.com/u/7445528/ ) and on the answer https://stackoverflow.com/a/62934097/ provided by the user 'Erfan' ( https://stackoverflow.com/u/9081267/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Conditionally drop Pandas Dataframe row

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Conditionally Drop Rows in a Pandas DataFrame Based on Neighboring Values

In data analysis, we often encounter situations where we need to manipulate our DataFrames based on specific conditions. One such problem is needing to drop rows in a Pandas DataFrame when the values in a certain column—let's say num2—are the same in both the row directly above and directly below the current row.

In this guide, we will walk through a step-by-step solution for this problem using Python's Pandas library.

Understanding the Problem

Imagine you have a DataFrame like this:

[[See Video to Reveal this Text or Code Snippet]]

This DataFrame contains two columns, num1 and num2. Our goal is to remove rows from this DataFrame where the num2 values of the rows immediately before and after any row are the same.

For instance, looking at the num2 values:

The row with num1 equal to 11 has neighbors that are both 10, so it should be dropped.

Rows with 42 and 4 should be retained, as their neighbors have different num2 values.

The desired output DataFrame would look like this:

[[See Video to Reveal this Text or Code Snippet]]

Solution Steps

Let's break down how to achieve this in a clean and efficient manner.

Step 1: Use the shift() Method

To compare the values in num2 from previous and next rows, we can leverage the shift() method. This method allows us to refer to the row above or below in our DataFrame.

Shift the num2 Series once to get the previous row's value.

Shift it again for the next row's value.

Compare these shifted values.

Step 2: Create the Filter

Combine the results of these comparisons to filter out the unwanted rows. Here’s how our code looks:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Result

When you execute this command, you'll get the DataFrame filtered as required:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

The shift() method in Pandas provides a powerful way to look at neighboring values in your DataFrame, making it an essential tool for conditionally dropping rows based on surrounding data. This technique is efficient and eliminates the need for creating additional columns, streamlining your data processing workflow.

By understanding how to manipulate your DataFrame this way, you can enhance your data analysis capabilities significantly.

For more guides and tips on Pandas and data manipulation in Python, stay tuned!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]