Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use the Where Function in Python to Ignore NaN Values

  • vlogize
  • 2025-05-27
  • 0
How to Use the Where Function in Python to Ignore NaN Values
Where function ignoring Nanpythonpandasnumpynan
  • ok logo

Скачать How to Use the Where Function in Python to Ignore NaN Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use the Where Function in Python to Ignore NaN Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use the Where Function in Python to Ignore NaN Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use the Where Function in Python to Ignore NaN Values

Learn how to effectively use the where function in Python with Pandas and NumPy while ignoring NaN values in your data.
---
This video is based on the question https://stackoverflow.com/q/66679082/ asked by the user 'josepmaria' ( https://stackoverflow.com/u/13023224/ ) and on the answer https://stackoverflow.com/a/66679439/ provided by the user 'Ch3steR' ( https://stackoverflow.com/u/12416453/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Where function ignoring Nan

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Use the Where Function in Python to Ignore NaN Values

Handling missing values, or NaN, in your data can be quite challenging. This is particularly true when trying to perform logical operations such as comparisons or conditional checks. If you are working with a dataset in Python using Pandas or NumPy, you may find yourself needing to use the where function but want to ensure that your NaN entries are not dropped or replaced unintentionally. In this post, we'll dive into how to achieve that effectively.

The Problem: Ignoring NaN in the Where Function

Consider the following toy dataset:

[[See Video to Reveal this Text or Code Snippet]]

This DataFrame outputs:

[[See Video to Reveal this Text or Code Snippet]]

You want to compare the two columns A and B, and create a new column called check that either displays True, False, or NaN depending on whether the values in A and B match. The desired result is:

[[See Video to Reveal this Text or Code Snippet]]

The Attempted Solution

You might have tried to use the following code but found that it didn't work as expected:

[[See Video to Reveal this Text or Code Snippet]]

This approach fails because it does not effectively handle the NaN values in the comparison.

A Working Solution

To solve this problem, you can make use of boolean masking with the help of Pandas and NumPy. Here’s a clear, step-by-step breakdown of the solution:

Identify Rows with NaN Values: Create a boolean mask m that checks for any NaN values in either of the columns.

Compare the Two Columns: Use the eq() function in Pandas to compare the columns A and B and store the results in the check column.

Handle NaNs Appropriately: Set the corresponding entries in the check column to NaN where the boolean mask indicates a NaN was present.

Implementation Steps

Below is the proper code implementation:

[[See Video to Reveal this Text or Code Snippet]]

Optional Workaround: Change Data Type

In some cases, you may want to ensure that the check column can contain both boolean and NaN values. You can do this by converting the column's data type to object. Here’s how to do that:

[[See Video to Reveal this Text or Code Snippet]]

Final Result

After executing the above code snippets, your DataFrame will look like this:

[[See Video to Reveal this Text or Code Snippet]]

By following this guide, you can effectively use the where function in Python while ignoring NaN values in your datasets. This approach ensures that you maintain the integrity of your data while performing necessary comparisons and logic operations.

Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]