Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Save Uncompressed Outputs from a Training Job Using AWS Sagemaker Python SDK

  • vlogize
  • 2025-05-27
  • 0
How to Save Uncompressed Outputs from a Training Job Using AWS Sagemaker Python SDK
how to save uncompressed outputs from a training job in using aws Sagemaker python SDK?pythonboto3amazon sagemaker
  • ok logo

Скачать How to Save Uncompressed Outputs from a Training Job Using AWS Sagemaker Python SDK бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Save Uncompressed Outputs from a Training Job Using AWS Sagemaker Python SDK или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Save Uncompressed Outputs from a Training Job Using AWS Sagemaker Python SDK бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Save Uncompressed Outputs from a Training Job Using AWS Sagemaker Python SDK

Learn how to efficiently save uncompressed outputs from your training jobs in AWS Sagemaker using the Python SDK, avoiding unnecessary decompression steps.
---
This video is based on the question https://stackoverflow.com/q/65421005/ asked by the user 'Alex Finkelshtein' ( https://stackoverflow.com/u/11487739/ ) and on the answer https://stackoverflow.com/a/65977591/ provided by the user 'Alex Finkelshtein' ( https://stackoverflow.com/u/11487739/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: how to save uncompressed outputs from a training job in using aws Sagemaker python SDK?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Save Uncompressed Outputs from a Training Job Using AWS Sagemaker Python SDK

When working with AWS Sagemaker, a common challenge developers face is managing the output files saved during training jobs, especially when these files could range from metadata to larger datasets. Frequently, Sagemaker automatically compresses artifacts to save space, which can lead to complications when you need to access smaller files without the hassle of decompressing larger output sets. If you've ever found yourself in a situation where you just want a specific artifact, such as a .txt or .csv file, but have to deal with ~1GB of compressed data, you're not alone.

The Challenge

As mentioned in our initial scenario, the "output_dir" parameter in the Sagemaker Estimator will indeed lead to all saved files under /opt/ml/output being uploaded in a compressed format. This poses a significant challenge:

Unnecessary Decompression: Downloading and decompressing large files just to access small metadata files can be excessively time-consuming and inefficient.

Precision Needs: Sometimes the artifacts of interest are minor components of the overall output, and requiring full decompression is not practical.

The Solution

Fortunately, there is a clean way to access your artifacts in an uncompressed manner. Here's a step-by-step guide on how to achieve this using AWS Sagemaker's Python SDK.

Step 1: Use the Checkpoint Path

AWS Sagemaker provides a feature that allows you to set a checkpoint path. By default, this path is synced to your specified S3 bucket in an uncompressed format. Here’s how to leverage that:

Specify a Checkpoint Path: When you define your Estimator, make sure to set a checkpoint path that points directly to your S3 bucket. This is where your model checkpoints will be saved during the training job.

[[See Video to Reveal this Text or Code Snippet]]

Train Your Model: Proceed to train your model as you normally would. Sagemaker will save the specified checkpoined files directly in the S3 bucket in an uncompressed format.

Access Artifacts: The files saved in the checkpoint directory can be accessed directly from S3 without needing to decompress them. You can easily retrieve your .txt or .csv files, reducing your overhead.

Step 2: Directly Accessing Artifacts

When you need to access specific artifacts, you can utilize the Boto3 library (the AWS SDK for Python) to retrieve these files. Here’s a simple way to list and retrieve files from the S3 checkpoint directory:

[[See Video to Reveal this Text or Code Snippet]]

Using this approach, you can optimize your output management during training jobs dramatically. If you only need specific small metadata updates or data files, you no longer will be forced into the cumbersome scenario of downloading gigabytes of compressed data.

Conclusion

By utilizing the checkpoint path in AWS Sagemaker, you can easily save and retrieve uncompressed outputs, streamlining your workflow significantly. This method not only saves time but also enhances your efficiency, allowing you to focus on the critical aspects of your data science projects without unnecessary hinderances.

If you have further questions or need additional details, don’t hesitate to reach out. Each training job can present unique challenges, but with the right strategies in place, managing outputs can be a more manageable task.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]