Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Concatenate DataFrames in Python Without NaN Values

  • vlogize
  • 2025-03-28
  • 1
How to Concatenate DataFrames in Python Without NaN Values
Concatenate Dataframes on common values yields NaN values for non-matches [python]pythonpandasdataframemergeconcatenation
  • ok logo

Скачать How to Concatenate DataFrames in Python Without NaN Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Concatenate DataFrames in Python Without NaN Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Concatenate DataFrames in Python Without NaN Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Concatenate DataFrames in Python Without NaN Values

Learn how to seamlessly merge DataFrames in Python using Pandas while handling NaN values effectively. This guide offers step-by-step solutions for merging data.
---
This video is based on the question https://stackoverflow.com/q/70978204/ asked by the user 'LostinSpatialAnalysis' ( https://stackoverflow.com/u/15781591/ ) and on the answer https://stackoverflow.com/a/70978456/ provided by the user 'Ben.T' ( https://stackoverflow.com/u/9274732/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Concatenate Dataframes on common values yields NaN values for non-matches [python]

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Concatenate DataFrames in Python Without NaN Values: A Simple Guide

When working with data in Python, especially using the Pandas library, merging and concatenating DataFrames is a common task. However, it’s not uncommon to encounter NaN values when the merging process doesn’t align the data as expected. In this guide, we'll explore how to merge two DataFrames on a common column, while ensuring that unmatched rows do not produce unwanted NaN values.

Understanding the Problem

In our scenario, we have two DataFrames:

DataFrame A contains building details such as ID, Area, Height, and mean outdoor Temperature recorded at the building site.

DataFrame B includes the same building IDs but records temperature at varying distances away from the building.

The goal is to create a new DataFrame C that consolidates this information so that each building's Area and Height remains constant across all distance records.

Example DataFrames

DataFrame A:

[[See Video to Reveal this Text or Code Snippet]]

DataFrame B:

[[See Video to Reveal this Text or Code Snippet]]

The Merging Attempt

When aiming to concatenate these DataFrames using the following code:

[[See Video to Reveal this Text or Code Snippet]]

We ended up with NaN values for Area and Height because DataFrame B didn’t contain this information. So, how can we prevent this?

Solution Options

Option 1: Using Forward Fill

If you're certain that every building ID in DataFrame A has a record with a distance of 0, you can easily fill forward the values for Area and Height by using the ffill method:

[[See Video to Reveal this Text or Code Snippet]]

This fills the missing values based on the previous rows.

Option 2: GroupBy Transformation

If you're unsure that all IDs will have a distance of 0, a more flexible approach is to use groupby along with transform and fillna. Here's how:

[[See Video to Reveal this Text or Code Snippet]]

This method ensures that for each ID, it fills the NaN values for Area and Height with the first available value within that group.

Option 3: Merge Before Concatenation

Another robust solution is to add Area and Height to DataFrame B before concatenation:

[[See Video to Reveal this Text or Code Snippet]]

This way, each row in the concatenated DataFrame will have the corresponding Area and Height values, preventing any NaN entries.

Conclusion

Merging DataFrames in Python using Pandas doesn't have to result in unwanted NaN values. By using techniques like forward-filling, group transformations, or pre-merge adjustments, you can achieve a consolidated DataFrame that retains necessary information without any gaps.

By following the methods outlined in this guide, you'll be able to effectively manage and manipulate your data with greater confidence. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]