Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Deep Reinforcement Learning to train locomotion activity in Robots

  • TECH YOU CAN
  • 2020-07-07
  • 20
Deep Reinforcement Learning to train locomotion activity in Robots
artificial intelligencemachinelearningAIDeep learningBennettgreater noidauniversity2019projectinternshipDeep Reinforcement Learning to train locomotion activity in RobotsDeep Reinforcement Learninglocomotion activitylocomotion activity in Robots
  • ok logo

Скачать Deep Reinforcement Learning to train locomotion activity in Robots бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Deep Reinforcement Learning to train locomotion activity in Robots или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Deep Reinforcement Learning to train locomotion activity in Robots бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Deep Reinforcement Learning to train locomotion activity in Robots

Deep reinforcement learning (DRL) is at the cutting edge right now and has finally reached a point where we can apply it in the real world. In this project, we use policy gradient methods that exist in reinforcement learning to achieve the state of the art performance in continuous control tasks. Our objective was to use intensive reinforcement learning to allow robots to learn locomotive gates. We simulated these continuous control functions in the Box2D and MuJoCo (Multi-Joint Dynamics with Contact) environment, which allowed us to see the results of the algorithms that we have used on agents for the task. The policy gradient algorithms we use are DDPG, SAC, and TD3. The algorithm is used on agents in environments that were derived from the JIM library. The two agents we worked with are half cheetahs and bipedal walkers. After training the model using the algorithm, we tuned the hyperparameters for optimal performance by the agent. It also involves generating graphs based on the performance of the agent which allows us to evaluate the reward from time to time trained. The results of our project are: - 1) we have successfully taught the agent to learn locomotive gates, 2) we optimized its performance by hyperparameter tuning and performance analysis, 3) graphs representing the agent's performance.

Read more:
  / how-deep-reinforcement-learning-is-used-for  
locomotion-skill-in-robotics-9130865c3f06


For more detail visit our website=====
Leadingindia.ai

Follow us on Twitter =====
https://twitter.com/LeadingindiaAI?s=08

Flow us on instagram=====
  / technology_ucan  

Like our Facebook page=====
  / techucan  

Also subscribe this channel for Technical videos=====
   / @techucan-technologyyoucan2121  

Contact us=====
[email protected]

Plz like, comment, share, subscribe and don't forget to press Bell icon for new updates😊

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]