Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Rotation representation (mathematics) | Wikipedia audio article

  • wikipedia tts
  • 2019-10-07
  • 40
Rotation representation (mathematics) | Wikipedia audio article
euclidean symmetriesorientation (geometry)rigid bodies mechanicsrotationrotation in three dimensionswikipedia audio articlelearning by listeningimproves your listening skillslearn while on the movereduce eye straintext to speech
  • ok logo

Скачать Rotation representation (mathematics) | Wikipedia audio article бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Rotation representation (mathematics) | Wikipedia audio article или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Rotation representation (mathematics) | Wikipedia audio article бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Rotation representation (mathematics) | Wikipedia audio article

This is an audio version of the Wikipedia Article:
https://en.wikipedia.org/wiki/Rotatio...


00:00:39 1 Rotations and motions
00:01:18 2 Formalism alternatives
00:01:38 2.1 Rotation matrix
00:03:55 2.2 Euler axis and angle (rotation vector)
00:04:34 2.3 Euler rotations
00:05:13 2.4 Quaternions
00:05:52 2.5 Rodrigues parameters and Gibbs representation
00:10:07 2.6 Cayley–Klein parameters
00:13:04 2.7 Higher-dimensional analogues
00:13:43 3 Conversion formulae between formalisms
00:14:03 3.1 Rotation matrix ↔ Euler angles
00:14:22 3.1.1 Rotation matrix → Euler angles (spaniz/i-ix/i-iz/i
00:15:01 3.1.2 Euler angles (spaniz/i-iy/i′-ix/i″
00:16:00 3.2 Rotation matrix ↔ Euler axis/angle
00:18:18 3.3 Rotation matrix ↔ quaternion
00:20:54 3.4 Euler angles ↔ quaternion
00:25:49 3.4.1 Euler angles (spaniz/i-ix/i-iz/i
00:26:08 3.4.2 Euler angles (spaniz/i-iy/i′-ix/i″
00:27:27 3.4.3 Quaternion → Euler angles (spaniz/i-ix/i-iz/i
00:28:45 3.4.4 Quaternion → Euler angles (spaniz/i-iy/i′-ix/i″
00:30:03 3.5 Euler axis–angle ↔ quaternion
00:31:22 4 Conversion formulae for derivatives
00:32:40 4.1 Rotation matrix ↔ angular velocities
00:33:00 4.2 Quaternion ↔ angular velocities
00:34:18 5 Rotors in a geometric algebra
00:35:17 6 See also
00:35:56 7 References
00:43:08 8 Further reading



Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.

Learning by listening is a great way to:
increases imagination and understanding
improves your listening skills
improves your own spoken accent
learn while on the move
reduce eye strain

Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.

Listen on Google Assistant through Extra Audio:
https://assistant.google.com/services...
Other Wikipedia audio articles at:
https://www.youtube.com/results?searc...
Upload your own Wikipedia articles through:
https://github.com/nodef/wikipedia-tts
Speaking Rate: 0.9656313376882717
Voice name: en-GB-Wavenet-C


"I cannot teach anybody anything, I can only make them think."
Socrates


SUMMARY
=======
In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
According to Euler's rotation theorem the rotation of a rigid body (or three-dimensional coordinate system with the fixed origin) is described by a single rotation about some axis. Such a rotation may be uniquely described by a minimum of three real parameters. However, for various reasons, there are several ways to represent it. Many of these representations use more than the necessary minimum of three parameters, although each of them still has only three degrees of freedom.
An example where rotation representation is used is in computer vision, where an automated observer needs to track a target. Consider a rigid body, with three orthogonal unit vectors fixed to its body (representing the three axes of the object's local coordinate system). The basic problem is to specify the orientation of these three unit vectors, and hence the rigid body, with respect to the observer's coordinate system, regarded as a reference placement in space.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]