Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Access Live Metrics During Apache Beam Pipeline Execution Using Python

  • vlogize
  • 2025-05-27
  • 4
How to Access Live Metrics During Apache Beam Pipeline Execution Using Python
Access Apache Beam metrics values during pipeline run in python?pythonapache beam
  • ok logo

Скачать How to Access Live Metrics During Apache Beam Pipeline Execution Using Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Access Live Metrics During Apache Beam Pipeline Execution Using Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Access Live Metrics During Apache Beam Pipeline Execution Using Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Access Live Metrics During Apache Beam Pipeline Execution Using Python

Learn how to effectively monitor `Apache Beam metrics` live during pipeline execution, particularly when using the Python SDK.
---
This video is based on the question https://stackoverflow.com/q/68803591/ asked by the user 'aKzenT' ( https://stackoverflow.com/u/679886/ ) and on the answer https://stackoverflow.com/a/68807089/ provided by the user 'robertwb' ( https://stackoverflow.com/u/582333/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Access Apache Beam metrics values during pipeline run in python?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Accessing Live Metrics During Apache Beam Pipeline Execution

When working with large data processing tasks using Apache Beam, it's common to want real-time insights into how your pipeline is performing. If you are using the Python SDK and the direct runner, you might encounter the challenge of accessing live metrics while your pipeline is executing. In this guide, we will explore the problem and present potential solutions to help you monitor live metrics effectively.

The Problem: Limited Metric Access with Direct Runner

The question at hand is straightforward: how can you access metrics during the execution of an Apache Beam pipeline in Python? You may already be familiar with reporting metrics using the metrics() function found in the PipelineResult object. However, there’s a catch. The Pipeline.run() method is a blocking call when using the direct runner, which means it waits for the pipeline to finish executing before you can retrieve any metrics.

Why Is This Issue Relevant?

Performance Monitoring: When dealing with large files or extensive computational tasks, understanding the performance metrics in real-time allows you to make adjustments on-the-fly.

Debugging: Quick visibility on metrics can help identify issues in the pipeline execution, providing vital information about where the bottlenecks are.

The Solution: Explore Alternative Runners

While the direct runner is excellent for testing and small jobs, it comes with limitations regarding real-time monitoring. Other runners, such as Apache Flink, allow for asynchronous execution, making it possible to access metrics while the pipeline is actively running.

Here’s What You Can Do:

Use an Alternative Runner: If live metric access is critical for your project, consider using a runner like Apache Flink.

Flink’s architecture is designed for scalability and efficiency, enabling you to monitor metrics as they are generated.

Run a Local Flink Instance:

You can set up a local version of the Apache Flink runner to take advantage of its non-blocking behavior. By doing so, you can not only execute your pipelines but also gain access to live metrics.

Steps to Run a Local Flink Instance

Step 1: Download and install Apache Flink on your machine.

Step 2: Configure your pipeline to use the Flink runner instead of the direct runner.

Step 3: Invoke the run() method, which will execute your pipeline asynchronously.

Step 4: Use the Flink dashboard to access real-time metrics during execution.

Conclusion

Accessing live metrics during an Apache Beam pipeline run in Python is challenging when using the direct runner due to its blocking design. However, transitioning to a runner like Apache Flink can provide the visibility you need to monitor your pipeline's performance effectively.

By setting up a local instance of Flink, you take advantage of its asynchronous capabilities and can start accessing vital metrics while your pipeline processes data.

If you are building complex data processing pipelines, incorporate these approaches into your workflow to enhance your monitoring capabilities. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]