Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Drop DataFrame Rows Based on Specific Criteria Using Python

  • vlogize
  • 2025-08-29
  • 0
How to Drop DataFrame Rows Based on Specific Criteria Using Python
Drop dataframe rows that meet two specific criteria (values) using Pythonpythonsortingfilter
  • ok logo

Скачать How to Drop DataFrame Rows Based on Specific Criteria Using Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Drop DataFrame Rows Based on Specific Criteria Using Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Drop DataFrame Rows Based on Specific Criteria Using Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Drop DataFrame Rows Based on Specific Criteria Using Python

Learn how to efficiently drop rows from a DataFrame based on age and weight criteria in Python with clear examples and explanations.
---
This video is based on the question https://stackoverflow.com/q/64352221/ asked by the user 'thefirstreal' ( https://stackoverflow.com/u/14154597/ ) and on the answer https://stackoverflow.com/a/64352252/ provided by the user 'thefirstreal' ( https://stackoverflow.com/u/14154597/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Drop dataframe rows that meet two specific criteria (values) using Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Dropping DataFrame Rows Based on Specific Criteria in Python

When working with data in Python, particularly using the popular pandas library, you may find yourself needing to clean your data by removing rows that don't meet certain criteria. A common scenario might involve filtering out players who exceed a specific age or weight. In this guide, we will explore how to drop a DataFrame's rows based on the criteria of age being greater than 25 years and weight being over 200 lbs.

Understanding the Problem

Suppose you have a DataFrame that contains information about players, including their names, ages, and weights. Your goal is to keep only those players who are 25 years old or younger and weigh 200 lbs or less. The challenge lies in using the correct syntax to filter the DataFrame effectively.

Sample DataFrame

Here's a quick look at the sample data we will be working with:

[[See Video to Reveal this Text or Code Snippet]]

Initial DataFrame Structure

After importing the data into a DataFrame and converting types, our DataFrame looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Solution: Dropping Rows with Specific Criteria

To filter the DataFrame based on our conditions (age ≤ 25 and weight ≤ 200), we need to use the correct logical operators to avoid common pitfalls.

Step 1: Filtering Rows

You can use df.drop() together with boolean indexing to remove unwanted rows. The key to remember is to use parentheses properly to ensure the logical operations work correctly between the conditions. Let's break it down:

[[See Video to Reveal this Text or Code Snippet]]

Here is the breakdown of this command:

df['Age'] >= 25.0: This condition checks if an age is greater than or equal to 25.

df['Weight'] >= 200.0: Similar to age, this checks if the weight is over 200 lbs.

| Operator: This is the logical OR operator. It will mark a row for dropping if either of the conditions holds true.

inplace=True: This means the changes will be applied directly to the existing DataFrame without needing to create a new one.

Step 2: Alternative Filtering Method

If you want to specify that both conditions must be true (AND condition), you can use the & operator instead:

[[See Video to Reveal this Text or Code Snippet]]

Final Output

After applying the filtering, you can print the DataFrame to see the results:

[[See Video to Reveal this Text or Code Snippet]]

This will give you the remaining players who meet your criteria:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In this guide, we've explored a straightforward method to drop rows from a DataFrame based on specific criteria using logical operators in Python's pandas library. Proper use of parentheses around conditions is crucial to avoid errors. By mastering these techniques, you can efficiently cleanse your data for better analysis and insights.

Feel free to reach out or leave a comment if you have any questions or need further clarification on filtering DataFrames in Python!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]