Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Form a Pivot Table on Two Categorical Columns and Count for Each Index

  • vlogize
  • 2025-08-16
  • 0
How to Form a Pivot Table on Two Categorical Columns and Count for Each Index
How to form a pivot table on two categorical columns and count for each index?pythonpandas
  • ok logo

Скачать How to Form a Pivot Table on Two Categorical Columns and Count for Each Index бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Form a Pivot Table on Two Categorical Columns and Count for Each Index или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Form a Pivot Table on Two Categorical Columns and Count for Each Index бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Form a Pivot Table on Two Categorical Columns and Count for Each Index

Learn how to create and customize a pivot table in Python using pandas to analyze categorical data effectively.
---
This video is based on the question https://stackoverflow.com/q/64210514/ asked by the user 'shiv_90' ( https://stackoverflow.com/u/6061080/ ) and on the answer https://stackoverflow.com/a/64210585/ provided by the user 'BENY' ( https://stackoverflow.com/u/7964527/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to form a pivot table on two categorical columns and count for each index?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Form a Pivot Table on Two Categorical Columns and Count for Each Index

In the world of data analysis, pivot tables are an invaluable tool. They allow you to summarize and analyze data in an easily digestible format. If you’re working with a dataset that contains categorical variables—like gender and major in a student survey—creating a pivot table can help you derive insights from your data seamlessly.

However, for those new to pandas in Python, figuring out how to create an effective pivot table can be tricky. In this guide, we will walk through the steps you need to take to create a pivot table using two categorical columns and count occurrences for each index.

Understanding the Problem

Let’s take a closer look at the dataset in question. You have a DataFrame named studentSurvey consisting of 62 undergraduate students with various columns, including:

ID

Gender

Age

Major

Text Messages

You want to analyze how many women chose "CS" as their major, how many men opted for "Others," and so on. The initial attempt using the pivot_table() function didn't yield the desired results because it included additional columns that weren't necessary for your analysis.

The Solution: Using pd.crosstab and Corrected pivot_table()

Using pd.crosstab()

One of the easiest and most efficient ways to create a pivot table in pandas is by using the crosstab() function. Here’s how you can use it to analyze your data:

[[See Video to Reveal this Text or Code Snippet]]

This simple function call will generate a table that counts the number of students for each gender and major without complicating the output with unnecessary columns. It's straightforward and gets you the answer you need with minimal coding effort.

Correcting Your Original pivot_table() Code

If you prefer to use the pivot_table() method instead, here’s the corrected version of your code:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Parameters:

index: This specifies the column that will form the rows of the pivot table, which in this case is Gender.

columns: This specifies the column that will form the columns of the pivot table, which is Major.

values: This parameter defines which values from the DataFrame should be aggregated. In this case, we use ID, but any other column can work as long as it fits the aggregation function.

aggfunc: This sets the function to apply to the data. Here, we use count to get the number of occurrences.

Results Interpretation

After running either the crosstab() or the corrected pivot_table() code, you will get a table like this:

[[See Video to Reveal this Text or Code Snippet]]

In the above example, you can clearly see how many females and males have chosen each major, providing valuable insights at a glance.

Conclusion

Creating a pivot table in pandas doesn't have to be complex. By using the pd.crosstab() function or correctly applying the pivot_table() method, you can analyze your categorical data effectively. Whether you are just learning or have some experience in Python, mastering these functions will significantly improve your data analysis skills.

Takeaway: Utilize pd.crosstab() for an easy breakdown of two categorical variables or correct your pivot_table() syntax for more complex scenarios.

Now you're ready to create your own pivot tables and get the most out of your data! Happy analyzing!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]