Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Fast with defaults, but struggles with structured output & UI grounding

  • Luca Berton
  • 2025-12-12
  • 3
Fast with defaults, but struggles with structured output & UI grounding
action dictionary outputai thinking tokensbounding boxescoordinate detectionenvironment detectiongrounding ocrgrounding performancegui actors modellinux vs windows aimobile ui groundingnavigation modelsocr in ai modelsos atlas modelpoints detectionprompt sensitivityqwen 2.5qwen2 backbonerobust ai modelssemantic understandingshow modelsingle target detectionstructured output aiui grounding models
  • ok logo

Скачать Fast with defaults, but struggles with structured output & UI grounding бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Fast with defaults, but struggles with structured output & UI grounding или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Fast with defaults, but struggles with structured output & UI grounding бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Fast with defaults, but struggles with structured output & UI grounding

I’ve been spending serious time hacking on UI grounding and multimodal models, and in this session I walk through my hands-on experience with some of the most popular ones right now: OS Atlas, Show, GUI Actors, and others.

We’ll cover what each model does well, where it struggles, and what to watch for if you’re considering them for single-target detection, OCR, UI navigation, or structured output. I highlight issues like prompt sensitivity, robustness across environments (Linux, Windows, web, mobile), grounding speed, and the need for more consistent output standards across the ecosystem.

If you’re experimenting with agent models, multimodal perception, or grounding tasks, this breakdown will save you time and frustration.

⏱️ Chapters

00:00 Intro: hacking on grounding models
00:08 OS Atlas — robust, structured output, great at single-target detection
00:35 Limitations when pushing prompts beyond training scope
01:09 A popular model with 120k+ downloads — but way too prompt-sensitive
01:38 Fast with defaults, but struggles with structured output & UI grounding
02:24 Show model — fast, gives coordinates/action dictionaries
02:54 Weak at identifying environment (Linux/Windows/web/mobile), OCR struggles
03:34 Built with Qwen2 backbone, future releases may improve
03:50 GUI Actors (Qwen 2.5 backbone) — fast, consistent, but requires exact prompts
04:45 Newer release defaults to bounding boxes, supports points too
05:01 OCR trade-offs: strong grounding OCR vs traditional OCR speed
05:34 Navigation strengths, outputs “thinking tokens” trend
06:15 Frustrations with subtle prompt changes & inconsistent outputs
06:42 Call for a standard in output formats and labels

What you’ll learn
How OS Atlas handles localization and robust structured outputs
Why some popular models are held back by extreme prompt sensitivity
What the Show model can (and can’t) do for environment awareness & OCR
How GUI Actors (Qwen 2.5 backbone) balance speed, consistency, and prompting constraints
OCR performance differences across models (grounding OCR vs traditional)
Why standardized output formats are urgently needed in grounding models
Where the ecosystem might be heading with “thinking tokens” and improved backbones

This is an unfiltered practitioner’s take: the wins, the frustrations, and the reality check on where UI grounding models stand today.

👉 Which grounding model have you tried, and what’s your biggest pain point—speed, accuracy, or output consistency? Comment below and let’s compare notes.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]