Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Effectively Subtract Rows After Group By in Python?

  • vlogize
  • 2025-05-27
  • 0
How to Effectively Subtract Rows After Group By in Python?
How to Subtract rows after group by in Python?pythondataframe
  • ok logo

Скачать How to Effectively Subtract Rows After Group By in Python? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Effectively Subtract Rows After Group By in Python? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Effectively Subtract Rows After Group By in Python? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Effectively Subtract Rows After Group By in Python?

Learn how to subtract rows in a dataframe after applying group by in Python. We'll walk you through an easy step-by-step solution!
---
This video is based on the question https://stackoverflow.com/q/66999082/ asked by the user 'Kalana' ( https://stackoverflow.com/u/11383441/ ) and on the answer https://stackoverflow.com/a/66999476/ provided by the user 'ugurtosun' ( https://stackoverflow.com/u/12176602/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to Subtract rows after group by in Python?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Effectively Subtract Rows After Group By in Python?

If you’re working with data in Python, especially with pandas DataFrames, you may often encounter situations where you need to manipulate your data after performing operations like groupby(). One common problem is needing to subtract rows based on certain conditions after grouping your data. In this guide, we'll tackle how to address this problem with a clear and concise solution.

Understanding the Problem

Suppose you have the following DataFrame representing transactions for different markets and types (Buy and Sell):

[[See Video to Reveal this Text or Code Snippet]]

Desired Outcome

The objective is to remove rows based on calculated differences between Buy and Sell amounts. After applying groupby(), you want to see only the rows where the Buy amount exceeds the Sell amount, leading to this expected result:

[[See Video to Reveal this Text or Code Snippet]]

Key Considerations

For Market B, since the total (Buy amount - Sell amount) equals zero (100.00 - 100.00 = 0), this market should be removed from the DataFrame.

We are assuming that for every market where a Sell exists, there will be a corresponding Buy amount that is greater than the Sell amount.

The Solution: Step-by-Step Guide

Let’s walk through the code that achieves this. Here's how to perform the necessary operations in Python using pandas.

Step 1: Prepare Your DataFrame

First, ensure you have your DataFrame set up correctly. For the purposes of this example, we will assume you have set it up as df.

Step 2: Adjust Sell Amounts

Next, we will convert the Sell amounts into negative values in order to properly apply the summation later on.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Group and Aggregate the Data

Now, we will group by the 'Market' column, using the sum function to aggregate the Amount, while taking the minimal Type.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Filter Out Zero Amounts

Finally, filter out any rows where the Amount is zero, as these represent markets with no effective buying or selling activity.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

With these steps completed, you should have a DataFrame that reflects your desired results, with unnecessary rows effectively removed. The process of subtracting rows after a group by might seem complicated at first, but with the right approach, you can handle it smoothly.

Final Thoughts

Doing data manipulation in Python can be powerful and straightforward once you understand the underlying logic. By following the methods outlined above, you can confidently manage and process your DataFrames to fit your needs.

If you have any questions or want to further discuss data manipulation techniques, feel free to reach out in the comments below.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]