Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use pandas.read_csv to Handle Missing Values Differently by Column Type

  • vlogize
  • 2025-03-23
  • 0
How to Use pandas.read_csv to Handle Missing Values Differently by Column Type
Get pandas.read_csv to treat missing values differently depending on column typepandascsvnan
  • ok logo

Скачать How to Use pandas.read_csv to Handle Missing Values Differently by Column Type бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use pandas.read_csv to Handle Missing Values Differently by Column Type или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use pandas.read_csv to Handle Missing Values Differently by Column Type бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use pandas.read_csv to Handle Missing Values Differently by Column Type

Learn how to effectively read CSV files with pandas, tackling missing values in numeric and string columns differently, all without predefining column types.
---
This video is based on the question https://stackoverflow.com/q/76661294/ asked by the user 'rowan_uk' ( https://stackoverflow.com/u/12474643/ ) and on the answer https://stackoverflow.com/a/76661347/ provided by the user 'mozway' ( https://stackoverflow.com/u/16343464/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Get pandas.read_csv to treat missing values differently depending on column type

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Use pandas.read_csv to Handle Missing Values Differently by Column Type

When working with data in CSV format, handling missing values properly is crucial for further analysis. The challenge arises when you want to treat blanks in numeric-like columns as NaN values while keeping blanks in string-like columns as empty strings. This becomes particularly tricky if you prefer not to know the column types beforehand. In this guide, we'll delve into a clear solution using pandas, a powerful data analysis library in Python.

Understanding the Problem

Imagine you have a CSV file, test.csv, structured like this:

[[See Video to Reveal this Text or Code Snippet]]

If we were to read this CSV file naively using pandas, we'd expect the output to look like this:

[[See Video to Reveal this Text or Code Snippet]]

However, without specific instructions, pandas may not handle it as we intend. In this example, we want:

Empty strings in the FloatCol to be treated as NaN.

Empty strings in the StrCol to be treated as empty strings.

The Conventional Approach

Let’s start by examining a simple way to load the CSV and replace empty strings in string-like columns:

[[See Video to Reveal this Text or Code Snippet]]

Output of the Conventional Approach

By running the above code, you might see:

[[See Video to Reveal this Text or Code Snippet]]

Notice that both StrCol and FloatCol are incorrectly detected as object.

Why the Default Handling May Not Work

If you want pandas to detect numeric columns correctly while treating specific values as missing, you might consider:

[[See Video to Reveal this Text or Code Snippet]]

However, this will lead to every entry, including valid numeric entries, becoming an object type due to the presence of empty strings. This is not the desired behavior.

A More Elegant Solution

Fortunately, there's a more efficient approach that preserves the types as needed while properly handling the missing data. We can use the pipe function to streamline the process:

[[See Video to Reveal this Text or Code Snippet]]

Expected Output with the Elegant Solution

This results in a DataFrame that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By utilizing the pipe method along with combine_first, you can elegantly read CSV files using pandas while treating missing values differently based on their column type. This approach allows for necessary flexibility and provides accurate data types without prior knowledge of the columns.

For data scientists and analysts, dealing with missing values correctly can make a huge difference in data integrity and analysis efforts. With this technique, you can ensure that your data is ready for exploration and insights!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]