Logistic Regression | ML | Visualise the interpretation of Probability, Odds Ratio and Log of Odds

Описание к видео Logistic Regression | ML | Visualise the interpretation of Probability, Odds Ratio and Log of Odds

Logistic Regression | ML | Visualise the interpretation of Probability, Odds Ratio and Log of Odds
#LogisticRegression #MachineLearning #Classification
1. How to visualize the interpretation of Probability, Odds Ratios and Log of odds in Logistic Regression
2. How to move from Probability to Odds
3. How to move from Odds to Log (Odds)
4. Why the transformation from
Probability to Odds to Log(Odds)
Logit  Loge(P / 1 – P) = m*X + c

00:30 Introduction
30:60 Details

Code Starts Here
==============
import random
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

randomFloatList = []

for i in range(0,100):
x = round(random.uniform(0.001,0.99),2)
randomFloatList.append(x)

prob = np.sort(randomFloatList)
prob = np.delete(prob,0)

odds = prob / (1 - prob)

logodds = np.log(odds)

import pandas as pd

df = pd.DataFrame()
df['prob'] = prob
df['odds'] = odds
df['logodds'] = logodds

plt.plot(df['prob'],df['odds'])
plt.xlabel('Probability')
plt.ylabel('odds')

plt.plot(df['odds'],df['logodds'])
plt.xlabel('odds')
plt.ylabel('logodds')
plt.title(' odds vs logodds')


All Playlist of this youtube channel
==============================

1. Data Preprocessing in Machine Learning
   • Data Preprocessing in Machine Learnin...  

2. Confusion Matrix in Machine Learning, ML, AI
   • Confusion Matrix in Machine Learning,...  

3. Anaconda, Python Installation, Spyder, Jupyter Notebook, PyCharm, Graphviz
   • Anaconda | Python Installation | Spyd...  

4. Cross Validation, Sampling, train test split in Machine Learning
   • Cross Validation | Sampling | train t...  

5. Drop and Delete Operations in Python Pandas
   • Drop and Delete Operations in Python ...  

6. Matrices and Vectors with python
   • Matrices and Vectors with python  

7. Detect Outliers in Machine Learning
   • Detect Outliers in Machine Learning  

8. TimeSeries preprocessing in Machine Learning
   • TimeSeries preprocessing in Machine L...  

9. Handling Missing Values in Machine Learning
   • Handling Missing Values in Machine Le...  

10. Dummy Encoding Encoding in Machine Learning
   • Label Encoding, One hot Encoding, Dum...  

11. Data Visualisation with Python, Seaborn, Matplotlib
   • Data Visualisation with Python, Matpl...  

12. Feature Scaling in Machine Learning
   • Feature Scaling in Machine Learning  

13. Python 3 basics for Beginner
   • Python | Python 3 Basics | Python for...  

14. Statistics with Python
   • Statistics with Python  

15. Sklearn Scikit Learn Machine Learning
   • Sklearn Scikit Learn Machine Learning  

16. Python Pandas Dataframe Operations
   • Python Pandas Dataframe Operations  

17. Linear Regression, Supervised Machine Learning
   • Linear Regression | Supervised Machin...  

18 Interview Questions on Machine Learning, Artificial Intelligence, Python Pandas and Python Basics
   • Interview Question for Machine Learni...  

19. Jupyter Notebook Operations
   • Jupyter and Spyder Notebook Operation...  

20. Logistic Regresion in Machine Learning, Data Science
   • Logistic Regression | Classification ...  

21. Learn Microsoft Excel Basics
   • Microsoft Excel 2019, 2016, 2013, 201...  

Комментарии

Информация по комментариям в разработке