Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Building Machine Learning Pipelines | Michiel Hagedoorn | SIGGRAPH 2025 HIVE

  • Houdini
  • 2025-08-26
  • 3684
Building Machine Learning Pipelines | Michiel Hagedoorn | SIGGRAPH 2025 HIVE
  • ok logo

Скачать Building Machine Learning Pipelines | Michiel Hagedoorn | SIGGRAPH 2025 HIVE бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Building Machine Learning Pipelines | Michiel Hagedoorn | SIGGRAPH 2025 HIVE или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Building Machine Learning Pipelines | Michiel Hagedoorn | SIGGRAPH 2025 HIVE бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Building Machine Learning Pipelines | Michiel Hagedoorn | SIGGRAPH 2025 HIVE

Learn how to build supervised ML pipelines in Houdini 21. Explore the ML nodes and features that have been added with Houdini 21. These ML nodes are designed to both leverage and enhance Houdini's proceduralism with fully automated end-to-end ML pipelines that include data generation, training and inference.

Houdini's ML nodes can be used to perform sub-tasks that are common to a variety of machine learning applications. This can save you a lot of work when you're creating your own machine learning pipeline. Among other things, the ML nodes support example generation, preprocessing, saving & loading data sets, neural-network training, and inference. We show how the ML nodes were used to build ML applications that are being released as part of Houdini 21. These applications include a volume upresser that can be applied to pyro sims and an improved character deformer.

Michiel Hagedoorn is a Senior 3D Scientist at SideFX Software. He currently works on ML tools and various ML-related projects. His other work at SideFX includes computational geometry, soft-body dynamics and character FX. Michiel has a Ph.D. in Computer Science from Utrecht University and was a post-doc researcher at the Max Planck Institute for Informatics. His research areas included computer vision and proximity search. In addition to that, Michiel was a game-engine developer at Digital Extremes, where he worked on real-time physics and game AI. Michiel has been passionate about math, programming and computer graphics from an early age.

00:00:00 Introduction
00:03:32 Regression & Toy Examples
00:07:05 Labeled Examples Overview
00:10:32 Data Preprocessing
00:14:02 Working with Unlabeled Data
00:17:26 Traditional vs Neural Techniques
00:20:48 Neural Network Training
00:24:03 Code Snippet Highlights
00:27:27 Correction Examples
00:31:10 Volume Upscaling

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]