Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solving the Floating Point Error in Numpy Matrix Inversion

  • vlogize
  • 2025-09-23
  • 0
Solving the Floating Point Error in Numpy Matrix Inversion
problem with numpy library multiply an inverted squared matrix with the original matrixpythonnumpymatrix
  • ok logo

Скачать Solving the Floating Point Error in Numpy Matrix Inversion бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solving the Floating Point Error in Numpy Matrix Inversion или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solving the Floating Point Error in Numpy Matrix Inversion бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solving the Floating Point Error in Numpy Matrix Inversion

Discover the common issue with Numpy matrix inversion and learn how to fix the `floating point error` that prevents obtaining an identity matrix.
---
This video is based on the question https://stackoverflow.com/q/63562156/ asked by the user 'Johanna Alm' ( https://stackoverflow.com/u/13936417/ ) and on the answer https://stackoverflow.com/a/63562295/ provided by the user 'Alexander Golys' ( https://stackoverflow.com/u/10630304/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: problem with numpy library multiply an inverted squared matrix with the original matrix

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Problem: Numpy Matrix Operations

When working with matrices in Python, particularly using the Numpy library, you may encounter an issue when attempting to multiply a matrix by its inverted version. The expected outcome of this operation is an identity matrix, which should look like this:

[[See Video to Reveal this Text or Code Snippet]]

However, sometimes you may observe results that include very small floating-point errors, such as:

[[See Video to Reveal this Text or Code Snippet]]

This might leave you puzzled about what went wrong and whether you need to convert any data types or adjust your calculations. Let’s dive into the details of this problem.

The Code in Action

Here’s a quick overview of the functions you might be using to handle matrix operations:

[[See Video to Reveal this Text or Code Snippet]]

You would typically use these functions as follows:

[[See Video to Reveal this Text or Code Snippet]]

The Unexpected Result

When you run the above code, instead of receiving a neat identity matrix, you get a result like this:

[[See Video to Reveal this Text or Code Snippet]]

The Culprit: Floating Point Error

The odd behavior you're witnessing is attributed to what is known as floating point error. In computing, floating point numbers cannot represent all decimal values exactly. This limitation can lead to unexpected results during arithmetic operations. A common example in Python is:

[[See Video to Reveal this Text or Code Snippet]]

Understanding Floating Point Representation

Here’s why this happens:

Computers represent numbers using a finite number of binary digits, which can be insufficient for some decimal fractions.

Consequently, minor discrepancies arise in mathematical operations involving floating point numbers.

In your matrix operation, while theoretically multiplying a matrix by its inverse should yield an identity matrix, the small errors from floating point representation affect the result.

Solutions and Workarounds

While you cannot completely eliminate floating point errors, you can employ some strategies to manage their effects:

Rounding Values: Use rounding functions when displaying results.

[[See Video to Reveal this Text or Code Snippet]]

Using np.isclose(): To check if values are equal within a tolerance level. This reserves them from being seen as different due to insignificant floating point discrepancies.

[[See Video to Reveal this Text or Code Snippet]]

Data Types: Ensure the matrices are using consistent data types. You can convert them to float if necessary:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In summary, when working with Numpy and matrices, you might come across floating point errors, particularly when multiplying an original matrix by its inverted matrix. Understanding that this is a normal characteristic of computational mathematics helps ensure you're not misled by the results. Employing techniques such as value rounding and comparison methods can help manage the outcomes effectively.

By grasping these concepts, you will become more adept at handling matrix operations and mitigating issues that arise due to floating point inaccuracies. Keep experimenting, and soon you will find your way around these common hurdles in numerical analysis!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]